Approximately 97% of patients with ovarian granulosa cell tumours (GCTs) bear the C134W mutation in FOXL2; however, the pathophysiological mechanism of this mutation is unknown. Here we report how this mutation affects GCT development. Sequential posttranslational modifications of the C134W mutant occur where hyperphosphorylation at serine 33 (S33) by GSK3β induces MDM2-mediated ubiquitination and proteasomal degradation. In contrast, S33 of wild-type FOXL2 is underphosphorylated, leading to its SUMOylation and stabilization. This prominent hyperphosphorylation is also observed at S33 of FOXL2 in GCT patients bearing the C134W mutation. In xenograft mice, the S33 phosphorylation status correlates with the oncogenicity of FOXL2, and the inhibition of GSK3β efficiently represses GCT growth. These findings reveal a previously unidentified regulatory mechanism that determines the oncogenic attributes of the C134W mutation via differential posttranslational modifications of FOXL2 in GCT development.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms3936DOI Listing

Publication Analysis

Top Keywords

posttranslational modifications
12
c134w mutation
12
granulosa cell
8
cell tumours
8
gct development
8
foxl2 gct
8
foxl2
6
mutation
5
foxl2 posttranslational
4
modifications mediated
4

Similar Publications

Caspase 3-specific cleavage of ubiquitin-specific peptidase 48 enhances drug-induced apoptosis in AML.

Cancer Biol Ther

December 2025

National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Department of Hematology, Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Dysfunction or dysregulation of deubiquitination is closely related to the initiation and development of multiple cancers. Targeted regulation of deubiquitination has been recognized as an important strategy in tumor therapy. However, the mechanism by which drugs regulate deubiquitinase is not clear.

View Article and Find Full Text PDF

Living organisms exhibit an impressive ability to expand the basic information encoded in their genome, specifically regarding the structure and function of protein. Two basic strategies are employed to increase protein diversity and functionality: alternative mRNA splicing and post-translational protein modifications (PTMs). Enzymatic regulation is responsible for the majority of the chemical reactions occurring within living cells.

View Article and Find Full Text PDF

Insight into the roles of lactylation in macrophages: functions and clinical implications.

Clin Sci (Lond)

January 2025

School of Basic Medicine, Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou, Hubei 434023, China.

Lactylation, a post-translational modification, has been linked to gene transcription regulation through epigenetic modulation in various pathophysiological processes. The lactylation regulatory proteins, known as writers, erasers, and readers, govern their dynamics by adding, removing, and recognizing lactyl groups on proteins. Macrophages, as cells of the immune system, maintain homeostasis, responding dynamically to diverse internal and external stimuli.

View Article and Find Full Text PDF

The proteins expressed during the cell cycle determine cell function and ensure signaling pathway activation in response to environmental influences. Developments in structural biology, biophysics, and bioinformatics provide information on the structure and function of particular proteins including that on the structural changes in proteins due to post-translational modification (PTM) and amino acid substitutions (AAS), which is essential for understanding protein function and life cycle. These are PTMs and AASs that often modulate the function and alter the stability and localization of a protein in a cell.

View Article and Find Full Text PDF

Stalled ribosomes cause collisions, impair protein synthesis, and generate potentially harmful truncated polypeptides. Eukaryotic cells utilize the ribosome-associated quality control (RQC) and no-go mRNA decay (NGD) pathways to resolve these problems. In yeast, the E3 ubiquitin ligase Hel2 recognizes and polyubiquitinates disomes and trisomes at the 40S ribosomal protein Rps20/uS10, thereby priming ribosomes for further steps in the RQC/NGD pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!