The optimization of graphene growth on copper foils using an atmospheric pressure chemical vapor deposition setup is reported. CH4 and H2 were used as precursor gases and Raman spectroscopy as the main graphene characterization technique. Different growth parameters, including temperature and reaction time, the molar ratio of CH4/H2 in the feed and total flow of gases during the reaction step, were studied in detail. It was shown that graphene growth was not homogeneous in the entire sample, multilayer graphene was present in most of the sample, however as the synthesis parameters were optimized, graphene gained better quality, obtaining bilayer graphene over most of the sheet in the final optimized sample. Homemade software was used to analyze the quality of the synthesised graphene, obtaining a more quality graphene according to the synthesis parameters optimized. An optimal bilayer graphene sample was prepared at the lowest growth time (10 min) and the highest synthesis temperature (1050 °C), using a CH4/H2 flow ratio and a total flow rate ratio of precursors of 7% and 60 Nml (CH4 + H4) per min respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp54832e | DOI Listing |
Environ Monit Assess
January 2025
School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China.
In this study, an efficient membrane composed of polysulfone and graphene oxide was developed and evaluated for its efficacy in chromium adsorption. Characterization of the synthesized membrane involved comprehensive analyses including scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR) to assess its structural properties. Subsequently, the membrane's performance in removing chromium from aqueous solutions was scrutinized, considering key operational parameters.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China.
In this manuscript, an all-optical modulation photodetector based on a CdS/graphene/Ge sandwich structure is designed. In the presence of the modulation (near-infrared) light, the Fermi level of the graphene channel shifts, allowing for the tuning of the visible light response speed as well as achieving a broad responsivity range from negative (-3376 A/W) to positive (3584 A/W) response. Based on this, logical operations are performed by adjusting the power of the modulation light superimposed with the signal light.
View Article and Find Full Text PDFACS Nano
January 2025
Center for Terahertz Waves and School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
The physical picture for photocurrent injection and coherent control in intrinsic graphene under two-color laser excitation remains obscure. Previously, photocurrent injection of intrinsic graphene was attributed to the quantum interference between two electronic transition pathways of single-photon and two-photon absorptions as well as layer-to-layer coupling. Here, we show that quantum interference between stimulated electronic Raman scattering and single-photon absorption plays a very important role in contributing to the total photocurrent, while interlayer coupling does not sufficiently affect the photocurrent injection, which is in contrast to the previous interpretation of the experimental results on photocurrent injection and coherent control.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, P. R. China.
Mn ions doped CsPbCl perovskite nanocrystals (NCs) exhibit superiority of spin-associated optical and electrical properties. However, precisely controlling the doping concentration, doping location, and the mono-distribution of Mn ions in the large-micro-size CsPbCl perovskite host is a formidable challenge. Here, the micro size CsPbCl perovskite crystals (MCs) are reported with uniform Mn ions doping by self-assembly of Mn ions doped CsPbCl perovskite NCs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Haiping Fang, School of Physics, East China University of Science and Technology, Shanghai, 20023, China.
The human visual nervous system excels at recognizing and processing external stimuli, essential for various physiological functions. Biomimetic visual systems leverage biological synapse properties to improve memory encoding and perception. Optoelectronic devices mimicking these synapses can enhance wearable electronics, with layered heterojunction materials being ideal materials for optoelectronic synapses due to their tunable properties and biocompatibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!