Nanosized titanium dioxide (TiO2) is one of the most interesting and valuable nanomaterials for the construction industry but also in health care applications, food, and consumer goods, e.g., cosmetics. Therefore, the properties associated with this material are described in detail. Despite its widespread use, the analytical determination and characterization of nanosized metal oxides is not as straightforward as the comparatively easy-to-detect metallic nanoparticles (e.g., silver or gold). This study presents the method development and the results of the determination of tissue titanium (Ti) levels after treatment of rats with the nanosized TiO2. Total Ti levels were chosen to evaluate the presence and distribution of TiO2 nanoparticles. A procedure consisting of incubation with a mixture of nitric acid (HNO3) and hydrofluoric acid (HF), and heating was developed to digest tissues and TiO2 nanomaterials in order to determine the total Ti content by inductively coupled plasma mass spectrometry (ICPMS). For the inter-laboratory comparison, altogether four laboratories analyzed the same samples upon digestion using the available ICPMS equipment. A major premise for any toxicokinetic study is the possibility to detect the chemical under investigation in biological samples (tissues). So, the study has to be performed with a dose high enough to allow for subsequent tissue level measurement of the chemical under investigation. On the other hand, dose of the chemical applied should not induce over toxicity in the animal as this may affect its absorption, distribution, metabolism, and excretion. To determine a non-toxic TiO2 dosage, an acute toxicity study in rats was performed, and the organs obtained were evaluated for the presence of Ti by ICPMS. Despite the differences in methodology and independent of the sample preparation and the ICPMS equipment used, the results obtained for samples with Ti concentrations >4 μg Ti/g tissue agreed well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-013-7580-z | DOI Listing |
J Med Internet Res
January 2025
Learning and Capacity Development Unit, Health Emergencies Programme, World Health Organization, Geneva, Switzerland.
Background: The COVID-19 pandemic demonstrated the global need for accessible content to rapidly train health care workers during health emergencies. The massive open access online course (MOOC) format is a broadly embraced strategy for widespread dissemination of trainings. Yet, barriers associated with technology access, language, and cultural context limit the use of MOOCs, particularly in lower-resource communities.
View Article and Find Full Text PDFNicotine Tob Res
January 2025
Department of Population Health Sciences, University of Leicester, Leicester, UK.
Introduction: Varenicline is an α4β2 nicotinic acetylcholine receptor partial agonist with the highest therapeutic efficacy of any pharmacological smoking cessation aid and a 12-month cessation rate of 26%. Genetic variation may be associated with varenicline response, but to date no genome-wide association studies of varenicline response have been published.
Methods: In this study, we investigated the genetic contribution to varenicline effectiveness using two electronic health record-derived phenotypes.
Int J Pharm Pract
January 2025
School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom.
Objectives: To explore the perspectives of stakeholders on the General Pharmaceutical Council's revised Standards for the Initial Education and Training of Pharmacists that enable pharmacists to prescribe at the point of registration, from 2026.
Methods: This qualitative study used the Theoretical Domains Framework (TDF) to develop schedules for structured interviews that were conducted with various stakeholders and recorded via Microsoft Teams. Recordings were transcribed verbatim, checked for accuracy, and then analysed using the Framework approach, facilitated by NVIVO® software.
J Cancer Res Ther
December 2024
Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
Aim: The tumor microenvironment in pancreatic cancer, characterized by abundant desmoplastic stroma, has been implicated in the failure of chemotherapy. Therefore, developing therapeutic strategies targeting tumor and stromal cells is essential. Triptolide, a natural compound derived from the plant Tripterygium wilfordii, has shown antitumor activity in various cancers, including pancreatic cancer.
View Article and Find Full Text PDFNeuro Oncol
January 2025
Childhood Cancer & Cell Death team (C3 team), Consortium South-ROCK, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France.
Background: Brain tumors are the deadliest solid tumors in children and adolescents. Most of these tumors are glial in origin and exhibit strong heterogeneity, hampering the development of effective therapeutic strategies. In the past decades, patient-derived tumor organoids (PDT-O) have emerged as powerful tools for modeling tumoral cell diversity and dynamics, and they could then help defining new therapeutic options for pediatric brain tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!