Hantaviruses successfully replicate in primary human endothelial cells by restricting the early induction of beta interferon (IFN-β) and interferon-stimulated genes (ISGs). Gn proteins from NY-1V, ANDV, and TULV, but not PHV, harbor elements in their 142-residue cytoplasmic tails (GnTs) that inhibit RIG-I/MAVS/TBK1-TRAF3-directed IFN-β induction. Here, we define GnT interactions and residues required to inhibit TRAF3-TBK1-directed IFN-β induction and IRF3 phosphorylation. We observed that GnTs bind TRAF3 via residues within the TRAF-N domain (residues 392 to 415) and that binding is independent of the MAVS-interactive TRAF-C domain (residues 415 to 568). We determined that GnT binding to TRAF3 is mediated by C-terminal degrons within NY-1V or ANDV GnTs and that mutations that add degrons to TULV or PHV GnTs confer TRAF3 binding. Further analysis of GnT domains revealed that TRAF3 binding is a discrete GnT function, independent of IFN regulation, and that residues 15 to 42 from the NY-1V GnT C terminus are required for inhibiting TBK1-directed IFN-β transcription. Mutagenesis of the NY-1V GnT revealed that altering tyrosine 627 (Y627A/S/F) abolished GnT regulation of RIG-I/TBK1-directed IRF3 phosphorylation and transcriptional responses of ISRE, κB, and IFN-β promoters. Moreover, GnTs from NY-1V, ANDV, and TULV, but not PHV, inhibited RIG-I-directed IRF3 phosphorylation. Collectively, these findings suggest a novel role for GnTs in regulating RIG-I/TBK1 pathway-directed IRF3 phosphorylation and IFN-β induction and define virulence determinants within GnTs that may permit the attenuation of pathogenic hantaviruses. IMPORTANCE These findings provide a mechanism for selected hantavirus GnT interactions to regulate RIG-I/TBK1 signaling responses required for IFN-β induction by inhibiting TBK1 phosphorylation of IRF3. These studies culminate in showing that a single GnT residue, Y627, is required for the NY-1V GnT to inhibit RIG-I/TBK1-directed IRF3 phosphorylation and IFN-β induction. These findings define a potential virulence determinant within the NY-1V GnT that may permit hantavirus attenuation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911538PMC
http://dx.doi.org/10.1128/JVI.02647-13DOI Listing

Publication Analysis

Top Keywords

irf3 phosphorylation
24
ifn-β induction
20
ny-1v gnt
16
traf3 binding
12
ny-1v andv
12
tulv phv
12
gnt
11
hantavirus gnt
8
inhibit rig-i/tbk1-directed
8
beta interferon
8

Similar Publications

Anti-herpetic tau preserves neurons via the cGAS-STING-TBK1 pathway in Alzheimer's disease.

Cell Rep

December 2024

School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA. Electronic address:

Alzheimer's disease (AD) diagnosis relies on the presence of extracellular β-amyloid (Aβ) and intracellular hyperphosphorylated tau (p-tau). Emerging evidence suggests a potential link between AD pathologies and infectious agents, with herpes simplex virus 1 (HSV-1) being a leading candidate. Our investigation, using metagenomics, mass spectrometry, western blotting, and decrowding expansion pathology, detects HSV-1-associated proteins in human brain samples.

View Article and Find Full Text PDF

An intracellular bacterial pathogen triggers RIG-I/MDA5-dependent necroptosis.

Curr Res Microb Sci

November 2024

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.

RIG-I and MDA5 are members of RIG-I-like receptors (RLRs) that detect viral RNA within the cytoplasm and subsequently initiate antiviral immune responses. Necroptosis is a form of programmed cell death (PCD) executed by mixed lineage kinase domain-like (MLKL), which, upon phosphorylation by receptor-interacting protein kinase 3 (RIPK3), causes necrotic cell death. To date, no link between RLRs and necroptosis has been observed during bacterial infection.

View Article and Find Full Text PDF

Objectives: To explore the role of the cGAS-STING signaling pathway in the therapeutic mechanism of Formula (LXJDHYF) for acute-on-chronic liver failure (ACLF) in mice.

Methods: Thirty C57BL/6 mice were randomly divided into blank control group, model group, low- and high-dose LXJDHYF groups, and H151 (a specific cGAS-STING pathway inhibitor) group (6). In all but the control group, the mice were treated with CCl to induce liver cirrhosis followed by intraperitoneal injections of lipopolysaccharide and D-amino galactose to establish mouse models of ACLF.

View Article and Find Full Text PDF

The activation of the STING-mediated signaling pathway leads to the secretion of type I interferon (IFN) and the activation of tumor-specific T cells. STING, a pattern recognition receptor located on the endoplasmic reticulum membrane of immune cells, binds with endogenous cyclic dinucleotides. STING undergoes phosphorylation, triggering the STING-TBK1-IRF3 pathway and NF-κB pathway, resulting in the release of IFN-β and other pro-inflammatory cytokines, ultimately enhancing the activation of tumor-specific T cells.

View Article and Find Full Text PDF

The cytosolic nucleic acid sensors RIG-I and cGAS induce type-I interferon (IFN)-mediated immune responses to RNA and DNA viruses, respectively. So far no connection between the two cytosolic pathways upstream of IKK-like kinase activation has been investigated. Here, we identify heterogeneous nuclear ribonucleoprotein M (hnRNPM) as a positive regulator of IRF3 phosphorylation and type-I IFN induction downstream of both cGAS and RIG-I.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!