Full open-framework batteries for stationary energy storage.

Nat Commun

1] Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA [2] Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.

Published: April 2015

New types of energy storage are needed in conjunction with the deployment of renewable energy sources and their integration with the electrical grid. We have recently introduced a family of cathodes involving the reversible insertion of cations into materials with the Prussian Blue open-framework crystal structure. Here we report a newly developed manganese hexacyanomanganate open-framework anode that has the same crystal structure. By combining it with the previously reported copper hexacyanoferrate cathode we demonstrate a safe, fast, inexpensive, long-cycle life aqueous electrolyte battery, which involves the insertion of sodium ions. This high rate, high efficiency cell shows a 96.7% round trip energy efficiency when cycled at a 5C rate and an 84.2% energy efficiency at a 50C rate. There is no measurable capacity loss after 1,000 deep-discharge cycles. Bulk quantities of the electrode materials can be produced by a room temperature chemical synthesis from earth-abundant precursors.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms4007DOI Listing

Publication Analysis

Top Keywords

energy storage
8
crystal structure
8
energy efficiency
8
energy
5
full open-framework
4
open-framework batteries
4
batteries stationary
4
stationary energy
4
storage types
4
types energy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!