Our primary objective was to determine whether administering the viscous and fermentable polysaccharide PolyGlycopleX (PGX) with metformin (MET) or sitagliptin/metformin (S/MET) reduces hyperglycemia in Zucker diabetic fatty (ZDF) rats more so than monotherapy of each. Glucose tolerance, adiposity, satiety hormones and mechanisms related to dipeptidyl peptidase 4 activity, gut microbiota and, hepatic and pancreatic histology were examined. Male ZDF rats (9-10 weeks of age) were randomized to: i) cellulose/vehicle (control, C); ii) PGX (5% wt/wt)/vehicle (PGX); iii) cellulose/metformin (200 mg/kg) (MET); iv) cellulose/S/MET (10 mg/kg+200 mg/kg) (S/MET); v) PGX (5%)+MET (200 mg/kg) (PGX+MET); vi) cellulose/sitagliptin/MET (5%)+(10 mg/kg+200 mg/kg) (PGX+S/MET) for 6 weeks. PGX+MET and PGX+S/MET reduced glycemia compared with C and singular treatments (P=0.001). Weekly fasted and fed blood glucose levels were lower in PGX+MET and PGX+S/MET compared with all other groups at weeks 4, 5, and 6 (P=0.001). HbA1c was lower in PGX+S/MET than C, MET, S/MET, and PGX at week 6 (P=0.001). Fat mass was lower and GLP1 was higher in PGX+S/MET compared with all other groups (P=0.001). β-cell mass was highest and islet degeneration lowest in PGX+S/MET. Hepatic lipidosis was significantly lower in PGX+S/MET compared with PGX or S/MET alone. When combined with PGX, both MET and S/MET markedly reduce glycemia; however, PGX+S/MET appears advantageous over PGX+MET in terms of increased β-cell mass and reduced adiposity. Both combination treatments attenuated diabetes in the obese Zucker rat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/JOE-13-0484 | DOI Listing |
J Endocrinol
March 2014
Faculty of Kinesiology Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 2500 University Drive Northwest, Calgary, Alberta, Canada T2N 1N4 Product Safety Labs, Department of Pharmacology, Dayton, New Jersey, USA Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA Factors Group of Nutritional Companies, Inc. R&D, 3655 Bonneville Place, Burnaby, British Columbia, Canada Canadian Centre for Functional Medicine, 1552 United Boulevard, Coquitlam, British Columbia, Canada University of British Columbia, Food, Nutrition and Health Program, Vancouver, British Columbia, Canada.
Our primary objective was to determine whether administering the viscous and fermentable polysaccharide PolyGlycopleX (PGX) with metformin (MET) or sitagliptin/metformin (S/MET) reduces hyperglycemia in Zucker diabetic fatty (ZDF) rats more so than monotherapy of each. Glucose tolerance, adiposity, satiety hormones and mechanisms related to dipeptidyl peptidase 4 activity, gut microbiota and, hepatic and pancreatic histology were examined. Male ZDF rats (9-10 weeks of age) were randomized to: i) cellulose/vehicle (control, C); ii) PGX (5% wt/wt)/vehicle (PGX); iii) cellulose/metformin (200 mg/kg) (MET); iv) cellulose/S/MET (10 mg/kg+200 mg/kg) (S/MET); v) PGX (5%)+MET (200 mg/kg) (PGX+MET); vi) cellulose/sitagliptin/MET (5%)+(10 mg/kg+200 mg/kg) (PGX+S/MET) for 6 weeks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!