The specific arrangement of secondary elements in a local motif often totally relies on the formation of coordination bonds between metal ions and protein ligands. This is typified by the ~30 amino acid eukaryotic zinc finger motif in which a β-sheet and an α-helix are clustered around a zinc ion by various combinations of four ligands. The prokaryotic zinc finger domain (found in the Ros protein from Agrobacterium tumefaciens) is different from the eukaryotic counterpart as it consists of 58 amino acids arranged in a βββαα topology stabilized by a 15-residue hydrophobic core. Also, this domain tetrahedrally coordinates zinc and unfolds in the absence of the metal ion. The characterization of proteins belonging to the Ros homologs family has however shown that the prokaryotic zinc finger domain can overcome the metal requirement to achieve the same fold and DNA-binding activity. In the present work, two zinc-lacking Ros homologs (Ml4 and Ml5 proteins) have been thoroughly characterized using bioinformatics, biochemical and NMR techniques. We show how in these proteins a network of hydrogen bonds and hydrophobic interactions surrogate the zinc coordination role in the achievement of the same functional fold.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbapap.2013.12.019 | DOI Listing |
Plants (Basel)
December 2024
College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
is a representative aromatic species. Wild roses are known for their strong tolerance to highly salty environments, whereas cultivated varieties of roses exhibit lower salt stress tolerance, limiting their development and industrial expansion. Previous studies have shown that C2H2-type zinc finger proteins play a crucial role in plants' resistance to abiotic stresses.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy.
The expression of oncogene zinc-finger protein 217 (ZNF217) has been reported to play a central role in cancer development, resistance, and recurrence. Therefore, targeting ZNF217 has been proposed as a possible strategy to fight cancer, and there has been much research on compounds that can target ZNF217. The present work investigates the chemo-preventive properties of cucurbitacin D, a compound with a broad range of anticancer effects, in hematological cancer cells, specifically with regard to its ability to modulate ZNF217 expression.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia.
has two paralogs, and , related to the evolutionarily conserved family genes. In mammals, the family consists of , encoding transcription co-factors involved in the regulation of development and cell fate determination. The function of and in remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Scientific Platforms, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA.
As a transcription factor, GLI1 plays an important role in cell cycle regulation, DNA replication, and DNA damage responses. The aberrant activation of GLI1 has been associated with cancers such as glioma, osteosarcoma, and rhabdomyosarcoma. The binding of GLI1 to a specific DNA sequence was achieved by five tandem zinc finger motifs (Zif motifs) on the N-terminal part of the molecule.
View Article and Find Full Text PDFCells
December 2024
Université Côte d'Azur, CNRS, INSERM, iBV, 06107 Nice, France.
The Wilms' tumor suppressor WT1 is essential for the development of the heart, among other organs such as the kidneys and gonads. The Wt1 gene encodes a zinc finger transcription factor that regulates proliferation, cellular differentiation processes, and apoptosis. WT1 is also involved in cardiac homeostasis and repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!