The change of break modulus drives human fibroblast differentiation in 3D collagen gels.

Front Biosci (Landmark Ed)

Department of Burn and Plastic Surgery, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.

Published: January 2014

Extracellular matrix is one of the key environmental factors influencing cell survival and provides signals for cell morphological change, migration, proliferation and differentiation. However, the mechanism through which denatured collagen modulates the biological properties of fibroblasts, is unclear. We investigated the regulation of human fibroblast differentiation in vitro grown in collagen gels with different properties. The break modulus of collagen with denatured collagen and half-load normal collagen was reduced compared with that of normal collagen gel. Fibroblasts cultured in denatured collagen gels showed increased expression of matrix metalloproteinase9 ( MMP-9), tissue inhibitor of metalloproteinase 2 (TIMP2), α-smooth muscle actin (α-SMA), osteoblast cadherin, phosphorylated Myosin phosphatase target subunit1 (p-MYPT1), connective tissue growth factor, type I collagen, type III collagen, α-smooth muscle actin messenger RNA, RhoA, rho-associated protein kinase, and transforming growth factor β receptors 1 and 2 compared with that in cells cultured in normal collagen gel. But there was no significant difference regarding expression level between denatured collagen gel and half-load normal collagen gel .These findings suggest that the change in break modulus caused by decreasing normal collagen concentration may be the key factor inducing fibroblast differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.2741/4239DOI Listing

Publication Analysis

Top Keywords

normal collagen
20
denatured collagen
16
collagen gel
16
collagen
14
break modulus
12
fibroblast differentiation
12
collagen gels
12
change break
8
human fibroblast
8
half-load normal
8

Similar Publications

Background/aim: Silicosis, the most severe type of occupational pneumoconiosis, leads to diffuse pulmonary fibrosis without specific therapy. Ferroptosis is triggered by reactive oxygen species (ROS) and Fe overload-induced lipid peroxidation, which is involved in the progression of pulmonary fibrosis. As an important coenzyme in the process of aerobic respiration, Coenzyme Q10 (CoQ10) can enhance mitochondrial function and energy supply and reduce malondialdehyde (MDA) to limit the risk of fibrosis.

View Article and Find Full Text PDF

Terminal Schwann cells (TSCs) are capable of regulating acetylcholine (ACh) release at the neuromuscular junction (NMJ). We have identified GABA as a gliotransmitter at mouse NMJs. When ACh activates α7 nicotinic ACh receptor (nAChRs) on TSCs, GABA is released and activates GABA receptors on the nerve terminal that subsequently reduce ACh release.

View Article and Find Full Text PDF

The albino northern snakehead (Channa argus) is an aquaculture species characterized by heritable albino body color, in contrast to the typical coloration. Additionally, there are gray- and golden-finned individuals, which exhibit distinct coloration in their caudal fins. We performed RNA-seq to profile the transcriptome of caudal fin tissues in albino gray-finned and golden-finned C.

View Article and Find Full Text PDF

An antibacterial and antioxidant rosmarinic acid hydrogel normalizes macrophage polarization to expedite diabetic wound healing.

J Colloid Interface Sci

December 2024

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China. Electronic address:

The management of diabetic wounds (DW) is a significant challenge within the medical field. Effectively regulating the levels of reactive oxygen species (ROS) at the wound site and orchestrating the inflammatory response are effective strategies for DW treatment. In this study, a novel hydrogel was developed by cross-linking polyboronic acid-modified carboxymethyl chitosan with herbal active ingredient rosmarinic acid (RA), an active herbal ingredient, through dynamic boronic esters formation.

View Article and Find Full Text PDF

Background: Gallstone formation is a common digestive ailment, with unclear mechanisms underlying its development. Dysfunction of the gallbladder smooth muscle (GSM) may play a crucial role, particularly with a high-fat diet (HFD). This study aimed to investigate the effects of an HFD on GSM and assess how it alters contractility through changes in the extracellular matrix (ECM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!