Personal exposure of primary school children to BTEX, NO₂ and ozone in Eskişehir, Turkey: relationship with indoor/outdoor concentrations and risk assessment.

Sci Total Environ

Anadolu University, Faculty of Engineering, Department of Environmental Engineering, 26555 Eskişehir, Turkey. Electronic address:

Published: March 2014

Personal exposures of 65 primary school children to benzene, toluene, ethyl benzene, xylenes (BTEX), nitrogen dioxide (NO2) and ozone (O3) were measured during 24h by using organic vapor monitors and tailor-made passive samplers. Two schools were selected to represent students living in more polluted (urban) and less polluted (sub-urban) areas in the city of Eskişehir, Turkey. The pollutant concentrations were also measured in indoor and outdoor environments during the personal sampling to investigate the contribution of each micro-environment on measured personal concentrations. Socio-demographic and personal time-activity data were collected by means of questionnaires and half-hour-time resolution activity diaries. Personal exposure concentrations were found to be correlated with indoor home concentrations. Personal, indoor and outdoor concentrations of all studied pollutants except for ozone were found to be higher for the students living at the urban traffic site. Ozone, on the other hand, had higher concentrations at the sub-urban site for all three types of measurements (personal, indoor and outdoor). Analysis of the questionnaire data pointed out to environmental tobacco smoke, use of solvent based products, and petrol station nearby as factors that affect personal exposure concentrations. Cancer and non-cancer risks were estimated using the personal exposure concentrations. The mean cancer risk for the urban school children (1.7×10(-5)) was found to be higher than the sub-urban school children (0.88×10(-5)). Children living with smoking parents had higher risk levels (1.7×10(-5)) than children living with non-smoking parents (1.08×10(-5)). Overall, the risk levels were <1×10(-4). All hazard quotient values for BTEX for the non-cancer health effects were <1 based on the calculations EPA's Risk Assessment Guidance for Superfund (RAGS) part F.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2013.12.034DOI Listing

Publication Analysis

Top Keywords

personal exposure
16
school children
16
indoor outdoor
12
exposure concentrations
12
personal
10
concentrations
9
primary school
8
eskişehir turkey
8
students living
8
personal indoor
8

Similar Publications

Evaluation of a Deep Learning Denoising Algorithm for Dose Reduction in Whole-Body Photon-Counting CT Imaging: A Cadaveric Study.

Acad Radiol

January 2025

Department of Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany (R.D., J.M.B., B.S., J.M., S.G., P.K., S.W., J.H., K.N., S.A., A.B.).

Rationale And Objectives: Photon Counting CT (PCCT) offers advanced imaging capabilities with potential for substantial radiation dose reduction; however, achieving this without compromising image quality remains a challenge due to increased noise at lower doses. This study aims to evaluate the effectiveness of a deep learning (DL)-based denoising algorithm in maintaining diagnostic image quality in whole-body PCCT imaging at reduced radiation levels, using real intraindividual cadaveric scans.

Materials And Methods: Twenty-four cadaveric human bodies underwent whole-body CT scans on a PCCT scanner (NAEOTOM Alpha, Siemens Healthineers) at four different dose levels (100%, 50%, 25%, and 10% mAs).

View Article and Find Full Text PDF

Towards healthy sleep environments: Ambient, indoor, and personal exposure to PM and its implications in children's sleep health.

Environ Res

January 2025

Department of Civil, Environmental, & Architectural Engineering, Worcester Polytechnic Institute, Worcester, MA, United States. Electronic address:

The growing impact of climate change and escalating wildfire seasons has led to heightened ambient air pollution, potentially affecting children's sleep health. However, current epidemiological research often relies on outdoor weather data to model the environmental impacts on sleep health, potentially mischaracterizing the actual bedroom environment. To address these challenges, we conducted experiments to investigate the relationships among ambient, indoor, and personal exposure to PM concentrations and obstructive sleep apnea (OSA) in children.

View Article and Find Full Text PDF

Unregulated pig farming practices expose pigs to fecal sewage and antibiotic stress, which are common health risk factors. Thus, its effects on the animals' intestinal microflora were investigated herein. In total, 2,315,563 high-quality sequences were obtained via amplitude sequencing and, after OUT clustering, the fecal sewage group was identified to have the highest number and the antibiotic exposure group the lowest.

View Article and Find Full Text PDF

Inverse dose protraction effects of high-LET radiation: evidence and significance.

Mutat Res Rev Mutat Res

January 2025

Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.

Biological effects of ionizing radiation vary with radiation quality, which is often expressed as the amount of energy deposited per unit length, i.e., linear energy transfer (LET).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!