In vitro activity of natural phenolic compounds against fluconazole-resistant Candida species: a quantitative structure-activity relationship analysis.

J Appl Microbiol

Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto (UNRC), Córdoba, Argentina.

Published: April 2014

Aims: To evaluate the antifungal activity and to analyse the structure-activity relationship of eleven natural phenolic compounds against four Candida species which are resistant to fluconazole.

Methods And Results: Four different species of Candida isolates were used: Candida albicans, Candida krusei, Candida tropicalis and Candida dubliniensis. The phenolic compound carvacrol showed the highest anti-Candida bioactivity, followed by thymol and isoeugenol. The obtained minimum inhibitory concentration (MIC) values obtained were used in a quantitative structure-activity relationship (QSAR) analysis where the electronic, steric, thermodynamic and topological descriptors served as dependent variables. According to the descriptors obtained in this QSAR study, the antifungal activity of phenols has a first action specific character which is based on their interaction with plasma or mitochondrial membranes. The second action is based on a steric descriptor-the maximal and minimal projection of the area-which could explain the inability of some phenolic compounds to be biotransformed to quinones methylene by Candida species.

Conclusions: According to the descriptors obtained in this QSAR study, the anti-Candida activity of ortho-substituted phenols is due to more than one action mechanism. The anti-Candida activity of phenolic compounds can be predicted by their molecular properties and structural characteristics.

Significance And Impact Of The Study: These results could be employed to predict the anti-Candida activity of new phenolic compounds in the search for new alternatives or complementary therapies to combat against candidiasis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jam.12432DOI Listing

Publication Analysis

Top Keywords

phenolic compounds
20
structure-activity relationship
12
anti-candida activity
12
natural phenolic
8
candida
8
candida species
8
quantitative structure-activity
8
antifungal activity
8
descriptors qsar
8
qsar study
8

Similar Publications

Background: Research into oxidative stress, cancer, and natural products revealed promising avenues for therapeutic intervention. Natural products are considered potent pharmaceuticals in combating oxidative stress and its relationship with cancer.

Methods: This study was carried out to evaluate the chemical profile and antioxidant activities using DPPH, ABTS, Phenanthroline, Cupric, Phosphomolybdenum, FRAP, Hydroxyl, Iron chelation in vitro assays, and anticancer properties by MTT method of Cistus creticus extracts.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a highly prevalent liver pathology in need of novel pharmacological treatments to complement lifestyle-based interventions. Nuclear receptor agonists have been under scrutiny as potential pharmacological targets and as of today, resmetirom, a thyroid hormone receptor b agonist, is the only approved agent. The dual PPAR α and δ agonist elafibranor has also undergone extensive clinical testing, which reached the phase III clinical trial but failed to demonstrate a beneficial effect on MASLD.

View Article and Find Full Text PDF

Djulis ( Koidz.) is an endemic cereal plant to Taiwan that has been cultivated by Taiwanese aborigines for hundreds of years. Djulis Djulis is a well-known ruby cereal because it contains betanin and exhibits strong antioxidant activity.

View Article and Find Full Text PDF

Aqueous extracts of and as promising sources of antibiofilm compounds against mucoid and small colony variants of and .

Biofilm

June 2025

Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal.

Bacterial biofilms formed by and pose significant challenges in treating cystic fibrosis (CF) airway infections due to their resistance to antibiotics. New therapeutic approaches are urgently needed to treat these chronic infections. This study aimed to investigate the antibiofilm potential of various plant extracts, specifically targeting mucoid and small colony variants of and and strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!