Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Normally hyperbolic invariant manifolds (NHIMs) are well-known organizing centers of the dynamics in the phase space of a nonlinear system. Locating such manifolds in systems far from symmetric or integrable, however, has been an outstanding challenge. Here, we develop an automated detection method for codimension-one NHIMs in autonomous dynamical systems. Our method utilizes Stationary Lagrangian Coherent Structures (SLCSs), which are hypersurfaces satisfying one of the necessary conditions of a hyperbolic LCS, and are also quasi-invariant in a well-defined sense. Computing SLCSs provides a quick way to uncover NHIMs with high accuracy. As an illustration, we use SLCSs to locate two-dimensional stable and unstable manifolds of hyperbolic periodic orbits in the classic ABC flow, a three-dimensional solution of the steady Euler equations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4824314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!