CBCT with specification of imaging dose and CNR by anatomical volume of interest.

Med Phys

Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, 5820 University Avenue, Halifax, Nova Scotia B3H 1V7, Canada.

Published: January 2014

Purpose: A novel method has been developed for volume of interest (VOI) cone-beam CT (CBCT) imaging using a 2.35 MV/Carbon target linac imaging beam line combined with dynamic multileaf collimator sequences.

Methods: The authors demonstrate the concept of acquisition of multiple, separate imaging volumes, where volumes can be either completely separated or nested, and are associated with predetermined imaging dose and contrast-to-noise ratio (CNR) characteristics. Two individual MLC sequences were established in the planning system (Eclipse, Varian Medical) to collimate the beam according to a defined inner VOI (e.g., containing a target volume under image guidance) and an outer VOI (e.g., including surrounding landmarks or organs-at-risk). MLC sequences were interleaved as a function of gantry angle to produce a reconstructed CBCT image with nested VOIs. By controlling the ratio of inner-to-outer ratio of MLC segments (and thus Monitor Units) during acquisition, the relative dose and CNR in the two volumes can be controlled. Inner-to-outer ratios of 2:1 to 6:1 were examined.

Results: The concept was explored using an anatomical head phantom to assess image quality. A geometric phantom was used to quantify absolute dose and CNR values for the various sequences. The authors found that the dose in the outer VOI decreased by a functional relationship dependent on the inner-to-outer sequence ratio, while the CNR varied by the square root of dose, as expected.

Conclusions: In this study the authors demonstrate flexibility in VOI CBCT by tailoring the imaging dose and CNR distribution in separate volumes within the patient anatomy. This would allow for high quality imaging of a target volume for alignment purposes, with simultaneous low dose imaging of the surrounding anatomy (e.g., for coregistration).

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.4855835DOI Listing

Publication Analysis

Top Keywords

dose cnr
16
imaging dose
12
imaging
8
dose
8
volume interest
8
authors demonstrate
8
ratio cnr
8
mlc sequences
8
target volume
8
outer voi
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!