We investigated the fiber Bragg grating (FBG) thermal response in space vacuum thermal environment. The FBGs were packaged with 6061-T6 aluminum. The liquid nitrogen immersion experiment results show that its wavelength shift standard deviation is 0.76 pm for 217 h. The combination effect of vacuum and cryogenic temperature was studied by thermal cycling process in space environment simulator. The FBG sensors show accuracy better than 2% full scale, and the hysteresis errors are below 1%. It proves that these metal packaged FBG sensors can survive and meet the requirement of space measurement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4842295 | DOI Listing |
Sensors (Basel)
January 2025
Department of Mechanical Engineering, Politecnico di Milano, Via G. La Masa 1, 20156 Milano, Italy.
In naval engineering, particular attention has been given to containerships, as these structures are constantly exposed to potential damage during service hours and since they are essential for large-scale transportation. To assess the structural integrity of these ships and to ensure the safety of the crew and the cargo being transported, it is essential to adopt structural health monitoring (SHM) strategies that enable real-time evaluations of a ship's status. To achieve this, this paper introduces an advancement in the field of smart sensing and SHM that improves ship monitoring and diagnostic capabilities.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milan, Italy.
Radiofrequency ablation (RFA) is a minimally invasive procedure that utilizes localized heat to treat tumors by inducing localized tissue thermal damage. The present study aimed to evaluate the temperature evolution and spatial distribution, ablation size, and reproducibility of ablation zones in ex vivo liver, kidney, and lung using a commercial device, i.e.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical Engineering, Technical University Eindhoven, 5612 AZ Eindhoven, The Netherlands.
The effects of mechanical vibrations on control system stability could be significant in control systems designed on the assumption of rigid-body dynamics, such as launch vehicles. Vibrational loads can also cause damage to launch vehicles due to fatigue or excitation of structural resonances. This paper investigates a method to control structural vibrations in real time using a finite number of strain measurements from a fiber Bragg grating (FBG) sensor array.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China.
Fiber Bragg gratings (FBGs) are widely used in stress and temperature sensing due to their small size, light weight, high resistance to high temperatures, corrosion, electromagnetic interference, and low cost. In recent years, various structural enhancements and sensitization to FBGs have been explored to improve the performance of ocean temperature and depth sensors, thereby enhancing the accuracy and detection range of ocean temperature and depth data. This paper reviews advancements in temperature, pressure, and dual-parameter enhancement techniques for FBG-based sensors.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mechanical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
Adhesive joining has the severe limitation that damages/defects developed in the bondline are difficult to assess. Conventional non-destructive examination (NDE) techniques are adequate to reveal disbonding defects in fabrication and delamination near the end of service life but are not helpful in detecting and monitoring in-service degradation of the joint. Several techniques suitable for long-term joint integrity monitoring are proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!