Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d16 containing (15)N and (14)N isotopes. The NMRD experiments refer to (1)H spin-lattice relaxation measurements in a broad frequency range (10 kHz-20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recently presented by Kruk et al. [J. Chem. Phys. 138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the (1)H relaxation of the solvent. The (1)H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin-nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4850635DOI Listing

Publication Analysis

Top Keywords

electron spin
16
propylene glycol
12
solutions nitroxide
12
esr nmrd
12
nmrd data
12
relaxation
9
spin-lattice relaxation
8
relaxation dispersion
8
glycol solutions
8
nmrd experiments
8

Similar Publications

Non-invasive electron paramagnetic resonance imaging detects tumor redox imbalance induced by ferroptosis.

Redox Rep

December 2025

Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.

Targeting ferroptosis, cell death caused by the iron-dependent accumulation of lipid peroxides, and disruption of the redox balance are promising strategies in cancer therapy owing to the physiological characteristics of cancer cells. However, the detection of ferroptosis using imaging remains challenging. We previously reported that redox maps showing the reduction power per unit time of implanted tumor tissues via non-invasive redox imaging using a novel, compact, and portable electron paramagnetic resonance imaging (EPRI) device could be compared with tumor tissue sections.

View Article and Find Full Text PDF

In ordered magnets, the elementary excitations are spin waves (magnons), which obey Bose-Einstein statistics. Similarly to Cooper pairs in superconductors, magnons can be paired into bound states under attractive interactions. The Zeeman coupling to a magnetic field is able to tune the particle density through a quantum critical point, beyond which a 'hidden order' is predicted to exist.

View Article and Find Full Text PDF

Synephrine, a protoalkaloid found in Citrus aurantium (CA) peels, exerts lipolytic, anti-inflammatory, and vasoconstrictive effects; however, its antioxidant activity remains unclear. In this study, electron spin resonance spectroscopy revealed that synephrine scavenged both hydroxyl and superoxide anion radicals. Several external stimuli, such as HO, X-rays, and ultraviolet (UV) radiation, cause stress-induced premature senescence (SIPS).

View Article and Find Full Text PDF

Great efforts have been made in the last few decades to realize electronic devices based on organic molecules. A possible approach in this field is to exploit the chirality of organic molecules for the development of spintronic devices, an applicative way to implement the chiral-induced spin selectivity (CISS) effect. In this work we exploit enantiopure tetrathiafulvalene (TTF) derivatives as chiral inducers at the nanoscale.

View Article and Find Full Text PDF

Purpose: Solid crystalline spin probes, such as lithium phthalocyanine (LiPc) and lithium octa-n-butoxynaphthalocyanine (LiNc-BuO), allow repeated oxygen measurement using electron paramagnetic resonance (EPR). Due to their short relaxation times, their use for pulse EPR oxygen imaging is limited. In this study, we developed and tested a new class of solid composite spin probes that modified the relaxation rates R and R of LiPc or LiNc-BuO probes, which allowed pO measurements in the full dynamic (0-760 torr) range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!