Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Circadian rhythms, biological oscillations with a period of about 24 h, are maintained by a genetically determined innate time-keeping system called the molecular circadian clockwork. Despite the physiological and clinical importance of the circadian clock, the development of small molecule modulators that directly target the core clock machinery has only been recently initiated. In the present study, we aimed to identify novel small molecule modulators influencing the molecular feedback loop of the circadian clock by applying our two-step cell-based screening strategy based on E-box-mediated transcriptional activity to test more than 1000 drug-like compounds. A derivative of 2-ethoxypropanoic acid designated as compound 15 was selected as the most promising candidate in terms of both efficacy and potency. We then performed pull-down assays with the biotinylated compound and find out that both cryptochrome (CRY)1 and 2 (CRY1/2), key negative components of the mammalian circadian clock, as molecular targets of compound 15. In accordance with the binding property, compound 15 enhanced E-box-mediated transcription in a CRY1/2-dependent manner, and more importantly, it attenuated the circadian oscillation of Per2-Luc and Bmal1-dLuc activities in cultured fibroblasts, indicating that compound 15 can functionally inhibit the effects of CRY1/2 in the molecular circadian clockwork. In conclusion, the present study describes the first novel chemical inhibitor of CRY1/2 that inhibits the repressive function of CRY1/2, thereby activating CLOCK-BMAL1-evoked E-box-mediated transcription. Further optimizations and subsequent functional studies of this compound may lead to development of efficient therapeutic strategies for a variety of physiological and metabolic disorders with circadian natures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/cb400752k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!