A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Source identification of PM2.5 in Steubenville, Ohio using a hybrid method for highly time-resolved data. | LitMetric

Source identification of PM2.5 in Steubenville, Ohio using a hybrid method for highly time-resolved data.

Environ Sci Technol

United States Environmental Protection Agency , Office of Research and Development, Research Triangle Park, North Carolina 27709.

Published: October 2015

A new source-type identification method, Reduction and Species Clustering Using Episodes (ReSCUE), was developed to exploit the temporal synchronicity typically observed between ambient species in high time resolution fine particulate matter (PM2.5) data to form clusters that vary together. High time-resolution (30 min) PM2.5 sampling was conducted for a month during the summer of 2006 in Steubenville, OH, an EPA designated nonattainment area for the U.S. National Ambient Air Quality Standards (NAAQS). When the data were evaluated, the species clusters from ReSCUE matched extremely well with the source types identified by EPA Unmix demonstrating that ReSCUE is a valuable tool in identifying source types. Results from EPA Unmix show that contributions to PM2.5 are mostly from iron/steel manufacturing (36% ± 9%), crustal matter (33% ± 11%), and coal combustion (11% ± 19%). More importantly, ReSCUE was useful in (i) providing objective data driven guidance for the number of source factors and key fitting species for EPA Unmix, and (ii) detecting tenuous associations between some species and source types in the results derived by EPA Unmix.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es402704nDOI Listing

Publication Analysis

Top Keywords

epa unmix
16
source types
12
source
5
species
5
epa
5
source identification
4
pm25
4
identification pm25
4
pm25 steubenville
4
steubenville ohio
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!