Potential regenerative treatment strategies for intervertebral disc degeneration in dogs.

BMC Vet Res

Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.

Published: January 2014

Pain due to spontaneous intervertebral disc (IVD) disease is common in dogs. In chondrodystrophic (CD) dogs, IVD disease typically develops in the cervical or thoracolumbar spine at about 3-7 years of age, whereas in non-chondrodystrophic (NCD) dogs, it usually develops in the caudal cervical or lumbosacral spine at about 6-8 years of age. IVD degeneration is characterized by changes in the biochemical composition and mechanical integrity of the IVD. In the degenerated IVD, the content of glycosaminoglycan (GAG, a proteoglycan side chain) decreases and that of denatured collagen increases. Dehydration leads to tearing of the annulus fibrosus (AF) and/or disc herniation, which is clinically characterized by pain and/or neurological signs. Current treatments (physiotherapy, anti-inflammatory/analgesic medication, surgery) for IVD disease may resolve neurological deficits and reduce pain (although in many cases insufficient), but do not lead to repair of the degenerated disc. For this reason, there is interest in new regenerative therapies that can repair the degenerated disc matrix, resulting in restoration of the biomechanical function of the IVD. CD dogs are considered a suitable animal model for human IVD degeneration because of their spontaneous IVD degeneration, and therefore studies investigating cell-, growth factor-, and/or gene therapy-based regenerative therapies with this model provide information relevant to both human and canine patients. The aim of this article is to review potential regenerative treatment strategies for canine IVD degeneration, with specific emphasis on cell-based strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914844PMC
http://dx.doi.org/10.1186/1746-6148-10-3DOI Listing

Publication Analysis

Top Keywords

ivd degeneration
16
ivd disease
12
ivd
10
potential regenerative
8
regenerative treatment
8
treatment strategies
8
intervertebral disc
8
repair degenerated
8
degenerated disc
8
regenerative therapies
8

Similar Publications

Background: Intervertebral disc degeneration (IDD) is a leading cause of low back pain, often linked to inflammation and pyroptosis in nucleus pulposus (NP) cells. The role of Periostin (POSTN) in IDD remains unclear.

Objective: This study aims to investigate the influence of POSTN on pyroptosis and NLRP3 inflammasome activation in NP cells during IDD.

View Article and Find Full Text PDF

Objective: Macrophages play a crucial role in various physiological processes. In intervertebral disc degeneration (IDD), macrophage infiltration has been observed in human intervertebral disc (IVD) specimens, but how macrophages influence IDD remains unclear.

Methods: According to the single-cell transcriptome expression profiles from GSE165722, we verified the infiltration of macrophages in IDD and the possible interaction between infiltrated macrophages and nucleus pulposus cells (NPCs).

View Article and Find Full Text PDF

Objectives: The incidence rate of intervertebral disc degeneration (IVDD) is increasing year by year, which brings great harm to our health. The change of biomechanical factors is an important reason for IVDD. Therefore, more and more studies use finite element (FE) models to analyze the biomechanics of spine.

View Article and Find Full Text PDF

Background: Resistin may connect obesity and intervertebral disc (IVD) degeneration (IDD) and is linked with chronic inflammation. Furthermore, human IDD is characterized by high expression of interleukin-20 (IL-20). The response of human nucleus pulposus (NP) cells to tensile forces depends on both the duration and magnitude of the force applied.

View Article and Find Full Text PDF

Morphological Patterns of Spinal Degeneration and Trauma in a Nigerian Population: a Retrospective Radio-Anatomic Study.

World Neurosurg

January 2025

Department of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa. Electronic address:

Background: Understanding the morphological patterns of degenerative and traumatic spinal conditions is essential for precise diagnosis and management plans. This study evaluates the sequence of structural changes in degenerative spinal disorder patients' disco-vertebral unit and the traumatic spinal injury patterns in a northwestern Nigerian population.

Methods: A hospital-based retrospective study reviewed radiologic images of 307 patients with spinal degeneration (n=269) and trauma (n=38) at two tertiary hospitals in Northwest Nigeria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!