Spatially controlled surface energy traps on superhydrophobic surfaces.

ACS Appl Mater Interfaces

Nanophysics, Istituto Italiano di Tecnologia (IIT) , Via Morego 30, 16163 Genova, Italy.

Published: January 2014

AI Article Synopsis

  • Scientists can make surfaces that repel water by changing their texture at different scales, like tiny bumps and grooves.
  • They use a special method to create superhydrophobic (water-repelling) patterns on materials called SU-8 by adding small particles to it.
  • This new way of controlling how water sticks to surfaces could help in making cool technology like sensors and medical tools.

Article Abstract

Water wetting and adhesion control on polymeric patterns are achieved by tuning the configuration of their surface's structural characteristics from single to dual and triple length-scale. In particular, surfaces with combined micro-, submicrometer-,and nanoroughness are developed, using photolithographically structured SU-8 micro-pillars as substrates for the consecutive spray deposition of polytetrafluoroethylene (PTFE) submicrometer particles and hydrophobically capped iron oxide colloidal nanoparticles. The PTFE particles alone or in combination with the nanoparticles render the SU-8 micropillars superhydrophobic. The water adhesion behaviour of the sprayed pillars is more complex since they can be tuned gradually from totally adhesive to completely non adhesive. The influence of the hierarchical geometrical features of the functionalized surfaces on this behaviour is discussed within the frame of the theory. Specially designed surfaces using the described technique are presented for selective drop deposition and evaporation. This simple method for liquid adhesion control on superhydrophobic surfaces can find various applications in the field of microfluidics, sensors, biotechnology, antifouling materials, etc.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am404565aDOI Listing

Publication Analysis

Top Keywords

superhydrophobic surfaces
8
adhesion control
8
surfaces
5
spatially controlled
4
controlled surface
4
surface energy
4
energy traps
4
traps superhydrophobic
4
surfaces water
4
water wetting
4

Similar Publications

The results of an investigation of an impact of the structure of recently synthesized bis(trifluoromethylsulfonyl)imide mono- and dicationic ionic liquids on their properties and behavior as lubricants for slippery liquid infused superhydrophobic coatings are presented for a wide temperature range. In this study, a new approach based on monitoring the surface tension of a liquid sessile droplet on top of a coating was exploited for the analysis of the evolution of the coating properties in prolonged contact with the liquid. It was found that the continuous contact with water flow results in slippery property degradation according to two different scenarios.

View Article and Find Full Text PDF

Superhydrophobic surfaces have attracted tremendous attention due to their intriguing lotus-leaf-like water-repelling phenomenon and wide applications, however, most superhydrophobic coatings are prepared with environmentally unfriendly organic solvents and suffer from poor mechanical strength. To solve these issues, waterborne recoatable superhydrophobic (WRSH) coatings are developed based on a novel self-synthesized water-soluble fluorinated acrylic polymer and hydrophobic modified silica nanoparticles. The trade-off between waterborne and superhydrophobicity is well mediated by protonation and deprotonation of the fluorinated acrylic polymer.

View Article and Find Full Text PDF

Superhydrophobic surfaces have been demonstrated to exhibit excellent anti-icing effects, but they are susceptible to the loss of ice repellency as a result of external impacts. This paper proposes a novel bionic armour structure that combines an armour structure with an arrowroot bionic structure. A composite method combining laser etching and chemical modification was employed to achieve superhydrophobicity on the surface of the aluminium alloy.

View Article and Find Full Text PDF

Aerogels hold great potential in thermal insulation, catalytic supports, adsorption, and separation, due to their low density, high porosity, and low thermal conductivity. However, their inherent mechanical fragility and limited control functionality pose substantial challenges that hinder their practical use. In this study, a strategy is developed for the fabrication of cross-linked aramid nanofiber aerogels (cANFAs) by combining internanofiber surface cross-linking with ice-templating techniques.

View Article and Find Full Text PDF

Surface Modification of 3D Biomimetic Shark Denticle Structures for Drag Reduction.

Adv Mater

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Shark skin features superhydrophilic and riblet-textured denticles that provide drag reduction, antifouling, and mechanical protection. The artificial riblet structures exhibit drag reduction capabilities in turbulent flow. However, the effects of the surface wettability of shark denticles and the cavity region underneath the denticle crown on drag reduction remain insufficiently explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!