Polyphosphate is a polymer of inorganic phosphate found in both prokaryotes and eukaryotes. Polyphosphate typically accumulates in acidic, calcium-rich organelles known as acidocalcisomes, and recent research demonstrated that vacuolar transporter chaperone 4 catalyzes its synthesis in yeast. The human pathogens Trypanosoma brucei and T. cruzi possess vacuolar transporter chaperone 4 homologs. We demonstrate that T. cruzi vacuolar transporter chaperone 4 localizes to acidocalcisomes of epimastigotes by immunofluorescence and immuno-electron microscopy and that the recombinant catalytic region of the T. cruzi enzyme is a polyphosphate kinase. RNA interference of the T. brucei enzyme in procyclic form parasites reduced short chain polyphosphate levels and resulted in accumulation of pyrophosphate. These results suggest that this trypanosome enzyme is an important component of a polyphosphate synthase complex that utilizes ATP to synthesize and translocate polyphosphate to acidocalcisomes in insect stages of these parasites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959231 | PMC |
http://dx.doi.org/10.1111/jeu.12093 | DOI Listing |
Elife
January 2025
Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Estrella Mountain Community College, Phoenix, AZ, USA.
Vacuole fusion is driven by SNARE proteins that require activation-or priming-by the AAA+ protein Sec18 (NSF) before they can bring membranes together and trigger the merger of two bilayers into a continuous membrane. Sec18 resides on vacuoles prior to engaging inactive cis-SNARE complexes through its interaction with the regulatory lipid phosphatidic acid (PA). Binding PA causes Sec18 to undergo large conformational changes that keeps it bound to the membrane, thus precluding its interactions with SNAREs.
View Article and Find Full Text PDFPlant Physiol
January 2025
Institute of Biology, University of Graz, Graz, Austria.
Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton- pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFPlant Cell
January 2025
State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
Salt stress causes ion toxicity in plant cells and limits plant growth and crop productivity. Sodium ions (Na+) are transported out of the cell and sequestered in the vacuole for detoxification under salt stress. The salt excretion system is controlled by the SALT OVERLY SENSITIVE (SOS) pathway, which consists of the calcium sensors SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN 8, the protein kinase SOS2, and the plasma membrane Na+/H+ antiporter SOS1.
View Article and Find Full Text PDFAbscission is a tightly regulated process in which plants shed unnecessary, infected, damaged, or aging organs, as well as ripe fruits, through predetermined abscission zones in response to developmental, hormonal, and environmental signals. Despite its importance, the underlying mechanisms remain incompletely understood. This study highlights the deleterious effects of abscission on chloroplast ultrastructure in the cells of the tomato flower pedicel abscission zone, revealing spatiotemporal differential gene expression and key transcriptional networks involved in chloroplast vesiculation during abscission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!