Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intensity normalization is an important preprocessing step in magnetic resonance (MR) image analysis. In MR images (MRI), the observed intensities are primarily dependent on (1) intrinsic magnetic resonance properties of the tissues such as proton density ( ), longitudinal and transverse relaxation times ( and respectively), and (2) the scanner imaging parameters like echo time (), repeat time (), and flip angle (). We propose a method which utilizes three co-registered images with different contrast mechanisms (PD-weighted, T2-weighted and T1-weighted) to first estimate the imaging parameters and then estimate , , and values. We then normalize the subject intensities to a reference by simply applying the pulse sequence equation of the reference image to the subject tissue parameters. Previous approaches to solve this problem have primarily focused on matching the intensity histograms of the subject image to a reference histogram by different methods. The fundamental drawback of these methods is their failure to respect the underlying imaging physics and tissue biology. Our method is validated on phantoms and we show improvement of normalization on real images of human brains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877309 | PMC |
http://dx.doi.org/10.1117/12.2007062 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!