The power of genome sequencing depends on the ability to understand what those genes and their proteins products actually do. The automated methods used to assign functions to putative proteins in newly sequenced organisms are limited by the size of our library of proteins with both known function and sequence. Unfortunately this library grows slowly, lagging well behind the rapid increase in novel protein sequences produced by modern genome sequencing methods. One potential source for rapidly expanding this functional library is the "back catalog" of enzymology--"orphan enzymes," those enzymes that have been characterized and yet lack any associated sequence. There are hundreds of orphan enzymes in the Enzyme Commission (EC) database alone. In this study, we demonstrate how this orphan enzyme "back catalog" is a fertile source for rapidly advancing the state of protein annotation. Starting from three orphan enzyme samples, we applied mass-spectrometry based analysis and computational methods (including sequence similarity networks, sequence and structural alignments, and operon context analysis) to rapidly identify the specific sequence for each orphan while avoiding the most time- and labor-intensive aspects of typical sequence identifications. We then used these three new sequences to more accurately predict the catalytic function of 385 previously uncharacterized or misannotated proteins. We expect that this kind of rapid sequence identification could be efficiently applied on a larger scale to make enzymology's "back catalog" another powerful tool to drive accurate genome annotation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875567PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084508PLOS

Publication Analysis

Top Keywords

"back catalog"
12
orphan enzymes
8
protein annotation
8
genome sequencing
8
source rapidly
8
orphan enzyme
8
sequence
7
orphan
5
rapid identification
4
identification sequences
4

Similar Publications

Poynting flux (PF) calculated from low Earth orbit spacecraft in situ ion drift and magnetic field measurements is an important measure of energy exchange between the magnetosphere and ionosphere. Defense Meteorological Satellite Program (DMSP) spacecraft provide an extensive back-catalog of ion drift and magnetic perturbation measurements, from which quasi-steady PF could be calculated. However, since DMSP are operations-focused spacecraft, data must be carefully preprocessed for research use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!