Pathobiology of cancer chemotherapy-induced peripheral neuropathy (CIPN).

Front Pharmacol

Centre for Integrated Preclinical Drug Development, The University of Queensland Brisbane, QLD, Australia ; School of Pharmacy, The University of Queensland Brisbane, QLD, Australia.

Published: December 2013

Chemotherapy induced peripheral neuropathy (CIPN) is a type of neuropathic pain that is a major dose-limiting side-effect of potentially curative cancer chemotherapy treatment regimens that develops in a "stocking and glove" distribution. When pain is severe, a change to less effective chemotherapy agents may be required, or patients may choose to discontinue treatment. Medications used to alleviate CIPN often lack efficacy and/or have unacceptable side-effects. Hence the unmet medical need for novel analgesics for relief of this painful condition has driven establishment of rodent models of CIPN. New insights on the pathobiology of CIPN gained using these models are discussed in this review. These include mitochondrial dysfunction and oxidative stress that are implicated as key mechanisms in the development of CIPN. Associated structural changes in peripheral nerves include neuronopathy, axonopathy and/or myelinopathy, especially intra-epidermal nerve fiber (IENF) degeneration. In patients with CIPN, loss of heat sensitivity is a hallmark symptom due to preferential damage to myelinated primary afferent sensory nerve fibers in the presence or absence of demyelination. The pathobiology of CIPN is complex as cancer chemotherapy treatment regimens frequently involve drug combinations. Adding to this complexity, there are also subtle differences in the pathobiological consequences of commonly used cancer chemotherapy drugs, viz platinum compounds, taxanes, vincristine, bortezomib, thalidomide and ixabepilone, on peripheral nerves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866393PMC
http://dx.doi.org/10.3389/fphar.2013.00156DOI Listing

Publication Analysis

Top Keywords

cancer chemotherapy
12
peripheral neuropathy
8
cipn
8
neuropathy cipn
8
chemotherapy treatment
8
treatment regimens
8
pathobiology cipn
8
peripheral nerves
8
chemotherapy
5
pathobiology cancer
4

Similar Publications

The multicenter, phase III GMMG ReLApsE trial (EudraCT-No:2009-013856-61) randomized relapsed and/or refractory multiple myeloma (RRMM) patients equally to lenalidomide/dexamethasone (LEN/DEX, 25mg days 1-21/40mg weekly, 4-week cycles) re-induction, salvage high dose chemotherapy (sHDCT, melphalan 200mg/m2), autologous stem cell transplantation (ASCT) and LEN maintenance (10mg/day; transplant arm, n=139) versus continuous LEN/DEX (control arm, n=138). Ninety-four percent of patients had received frontline HDCT/ASCT. We report an updated analysis of survival endpoints with a median follow-up of 99 months.

View Article and Find Full Text PDF

Purpose: Perfusion modeling presents significant opportunities for imaging biomarker development in breast cancer but has historically been held back by the need for data beyond the clinical standard of care (SoC) and uncertainty in the interpretability of results. We aimed to design a perfusion model applicable to breast cancer SoC dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) series with results stable to low temporal resolution imaging, comparable with published results using full-resolution DCE-MRI, and correlative with orthogonal imaging modalities indicative of biophysical markers.

Methods: Subsampled high-temporal-resolution DCE-MRI series were run through our perfusion model and resulting fits were compared for consistency.

View Article and Find Full Text PDF

Anti-programmed cell death 1 (PD-1) monoclonal antibodies (mAbs) have proven to be effective in treating various cancers, including colorectal, lung, and melanoma. Despite their clinical success, some patients develop resistance to mAbs, requiring co-treatments with radio- or chemotherapy. Interleukin-15 (IL-15) is an immunostimulatory cytokine that promotes immune cell production and proliferation.

View Article and Find Full Text PDF

Background: We aimed to investigate the clinical and molecular characteristics of different degrees of human epidermal growth factor receptor 2 (HER2) protein expression in HER2-negative breast cancer and the related factors affecting the efficacy of neoadjuvant chemotherapy in HER2-low breast cancer patients.

Methods: The study endpoint was pathological complete remission (PCR). Blood specimens and fresh cancer tissue samples were collected before neoadjuvant chemotherapy for whole-exon sequencing (WES) and RNA sequencing (RNA-seq), and patients were divided into a human epidermal growth factor receptor 2 (HER2)-low group and a HER2-0 group according to their HER2 expression status via bioinformatics analysis.

View Article and Find Full Text PDF

Chemotherapy resistance has long stood in the way of therapeutic advancement for lung cancer patients, the malignant tumor with the highest incidence and fatality rate in the world. Patients with lung adenocarcinoma (LUAD) now have a dismal prognosis due to the development of cisplatin (DDP) resistance, forcing them to use more costly second-line therapies. Therefore, overcoming resistance and enhancing patient outcomes can be achieved by comprehending the regulatory mechanisms of DDP resistance in LUAD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!