Endothelial dysfunction is a critical factor during the initiation of cardiovascular complications in diabetes. Berberine can ameliorate endothelial dysfunction induced by diabetes. However, the underlying mechanisms remain unclear. The aim of this study was to investigate the protective effect and mechanism of berberine on palmitate-induced endothelial dysfunction in human umbilical vein endothelial cells (HUVECs). The cell viability of HUVECs was determined by MTT assays. Nitric oxide (NO) level and production of reactive oxygen species (ROS) were determined in supernatants or in the cultured HUVECs. The mRNA level of endothelial nitric oxide synthase (eNOS) was measured by RT-PCR, and the protein levels of eNOS, p-eNOS, Akt, p-Akt, AMPK, p-AMPK, and NADPH oxidase (NOX4) were analyzed. The results demonstrated that berberine significantly elevated NO levels and reduced the production of ROS. The expressions of eNOS were significantly increased, while NOX4 protein expression was decreased in berberine-treated HUVECs. Moreover, berberine upregulated the protein expression of AMPK and p-AMPK in palmitate-treated HUVECs, but had no effect on the levels of Akt. Therefore, berberine ameliorates palmitate-induced endothelial dysfunction by upregulating eNOS expression and downregulating expression of NOX4. This regulatory effect of berberine may be related to the activation of AMPK.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3872165 | PMC |
http://dx.doi.org/10.1155/2013/260464 | DOI Listing |
Cardiovasc Drugs Ther
January 2025
Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
Purpose: Doxorubicin (Dox) is a classic anthracycline chemotherapy drug with cause cumulative and dose-dependent cardiotoxicity. This study aimed to investigate the potential role and molecular mechanism of phenylacetylglutamine (PAGln), a novel gut microbiota metabolite, in Dox-induced cardiotoxicity (DIC).
Methods: DIC models were established in vivo and in vitro, and a series of experiments were performed to verify the cardioprotective effect of PAGln.
Physiol Res
December 2024
Department of Physiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Martin, Slovak Republic.
Obesity is considered an important factor contributing to the development of atherosclerosis. Inflammation plays a key role in endothelial dysfunction (ED), an initial stage of the atherosclerotic process. Several microRNAs (miRNAs) may play an important role in the inflammatory process, but there is a lack of information about their participation in the early stages of atherosclerosis development in patients with obesity.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.
Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
February 2025
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
The media-lumen diameter ratio of small arteries is increased in hypertension, diabetes and obesity. It is likely that both shear stress on the endothelial cells, transmural pressure and smooth muscle cell tone are important for the altered vascular structure. However, the precise interaction and importance of these factors are incompletely understood.
View Article and Find Full Text PDFJ Atheroscler Thromb
January 2025
Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba.
Diabetes mellitus, particularly type 2 diabetes mellitus (T2DM), is a pervasive chronic disease that affects millions of people worldwide. It predisposes individuals to a range of severe microvascular and macrovascular complications, which drastically impact the patient's quality of life and increase mortality rates owing to various comorbidities. This extensive review explores the intricate pathophysiology underlying diabetic complications, focusing on key mechanisms, such as atherosclerosis, insulin resistance, chronic inflammation, and endothelial dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!