Fusobacterium in colonic flora and molecular features of colorectal carcinoma.

Cancer Res

Authors' Affiliations: Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania; Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake; First Departments of Internal Medicine and Molecular Biology, Sapporo Medical University, Sapporo; Department of Gastroenterology, Akita Red Cross Hospital, Akita; Department of Pathology, Iwate Medical University, Morioka; Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan; Division of OVP, Department of Clinical Cancer Prevention, Cancer Prevention and Population Sciences; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston; and Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas.

Published: March 2014

Fusobacterium species are part of the gut microbiome in humans. Recent studies have identified overrepresentation of Fusobacterium in colorectal cancer tissues, but it is not yet clear whether this is pathogenic or simply an epiphenomenon. In this study, we evaluated the relationship between Fusobacterium status and molecular features in colorectal cancers through quantitative real-time PCR in 149 colorectal cancer tissues, 89 adjacent normal appearing mucosae and 72 colonic mucosae from cancer-free individuals. Results were correlated with CpG island methylator phenotype (CIMP) status, microsatellite instability (MSI), and mutations in BRAF, KRAS, TP53, CHD7, and CHD8. Whole-exome capture sequencing data were also available in 11 cases. Fusobacterium was detectable in 111 of 149 (74%) colorectal cancer tissues and heavily enriched in 9% (14/149) of the cases. As expected, Fusobacterium was also detected in normal appearing mucosae from both cancer and cancer-free individuals, but the amount of bacteria was much lower compared with colorectal cancer tissues (a mean of 250-fold lower for Pan-fusobacterium). We found the Fusobacterium-high colorectal cancer group (FB-high) to be associated with CIMP positivity (P = 0.001), TP53 wild-type (P = 0.015), hMLH1 methylation positivity (P = 0.0028), MSI (P = 0.018), and CHD7/8 mutation positivity (P = 0.002). Among the 11 cases where whole-exome sequencing data were available, two that were FB-high cases also had the highest number of somatic mutations (a mean of 736 per case in FB-high vs. 225 per case in all others). Taken together, our findings show that Fusobacterium enrichment is associated with specific molecular subsets of colorectal cancers, offering support for a pathogenic role in colorectal cancer for this gut microbiome component.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396185PMC
http://dx.doi.org/10.1158/0008-5472.CAN-13-1865DOI Listing

Publication Analysis

Top Keywords

colorectal cancer
24
cancer tissues
16
colorectal
9
molecular features
8
features colorectal
8
gut microbiome
8
colorectal cancers
8
normal appearing
8
appearing mucosae
8
cancer-free individuals
8

Similar Publications

Background: We assessed association among household income, overall survival (OS), and cancer-specific survival (CSS) after proctectomy for rectal cancer.

Methods: Population-based cohort study included stage I-III rectal adenocarcinoma patients who underwent proctectomy (2010-2020), subdivided by household income at diagnosis [low (<$50,000), average ($50,000-74,999), above-average (≥$75,000)] and compared.

Results: Of 39,185 patients (59 ​% male; mean age 60.

View Article and Find Full Text PDF

Purpose: Human epidermal growth factor receptor 2 (HER2)-targeted therapies have shown promise in treating -amplified metastatic colorectal cancer (mCRC). Identifying optimal biomarkers for treatment decisions remains challenging. This study explores the potential of artificial intelligence (AI) in predicting treatment responses to trastuzumab plus pertuzumab (TP) in patients with -amplified mCRC from the phase II TRIUMPH trial.

View Article and Find Full Text PDF

FBXW7 metabolic reprogramming inhibits the development of colon cancer by down-regulating the activity of arginine/mToR pathways.

PLoS One

January 2025

Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China.

FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry.

View Article and Find Full Text PDF

Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.

View Article and Find Full Text PDF

Background: Chronic schistosomiasis causes multiple organ and multiple system diseases, especially the digestive system. Schistosome eggs are mainly deposited in the stomach, liver and colorectal, but a few eggs are deposited in the appendix and cause disease. At present, there are few studies on schistosomal appendicitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!