The human cell line rF2N78 produces an antibody with a high galactosylation ratio which resembles human IgG. However, it has been observed that the aglycosylated antibody starts to appear when glucose is depleted. To determine whether glucose depletion is a main cause for aglycosylation of the antibody, fed-batch cultures of rF2N78 cells were performed using different feeding cocktails (glucose only, nutrient feeding cocktail without glucose, and nutrient feeding cocktail with glucose). In the fed-batch culture with nutrient feeding cocktail without glucose, aglycosylated antibody was produced in a later phase of culture, when glucose was depleted. Approximately 44 % of antibodies produced were aglycosylated at the end of culture. In contrast, aglycosylated antibody was not produced in cultures with glucose feeding. The expression levels of oligosaccharyl transferases determined by Western blot analysis were similar among the cultures, suggesting that aglycosylation of the antibody was not due to altered expression of oligosaccharyl transferases under glucose-deficient conditions. Thus, it is likely that glucose deficiency led to insufficiency of the precursor for glycosylation and induced aglycosylation of the antibody. Taken together, glucose feeding in fed-batch cultures successfully prevented occurrence of aglycosylated antibody during the cultures, confirming that glucose depletion is a main cause for aglycosylation of antibody.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-013-5462-0 | DOI Listing |
Biotechnol Bioeng
February 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Monoclonal antibodies (mAbs) are a major class of biopharmaceuticals manufactured by well-established processes using Chinese Hamster Ovary (CHO) cells. Next-generation biomanufacturing using alternative hosts like Komagataella phaffii could improve the accessibility of these medicines, address broad societal goals for sustainability, and offer financial advantages for accelerated development of new products. Antibodies produced by K.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
November 2024
Department of Chemistry, Hunter College, City University of New York, New York 10021, New York, United States.
Fcγ receptors (FcγR) are responsible for many of the interactions between immunoglobulins (IgG) and immune cells. In biomedicine, this interplay is critical to the activity of several types of immunotherapeutics; however, relatively little is known about how FcγRs affect the in vivo performance of radiolabeled antibodies. A handful of recent preclinical studies suggest that binding by FcγR-and particularly FcγRI-can affect the pharmacokinetic profiles of Zr-labeled radioimmunoconjugates, but there are no extant studies in immunocompetent or genetically engineered mouse models of cancer.
View Article and Find Full Text PDFFront Immunol
August 2024
Analytical Excellence and Program Management, Merck Serono S.p.A., Rome, Italy.
Introduction: N-glycosylation is a post-translational modification that is highly important for the development of monoclonal antibodies (mAbs), as it regulates their biological activity, particularly in terms of immune effector functions. While typically added at the Fc level, approximately 15-25% of circulating antibodies exhibit glycosylation in the Fab domains as well. To the best of our knowledge, cetuximab (Erbitux) is the only therapeutic antibody presenting Fab glycosylation approved world-wide targeting the epidermal growth factor receptor for the treatment of metastatic-colorectal and head and neck cancers.
View Article and Find Full Text PDFMAbs
July 2024
Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA.
Sci Rep
July 2024
Roche Diagnostics GmbH, Nonnenwald, Penzberg, Germany.
Prostate-specific antigen (PSA) levels are widely used to screen for prostate cancer, yet the test has poor sensitivity, specificity and predictive value, which leads to overdiagnosis and overtreatment. Alterations in the glycosylation status of PSA, including fucosylation, may offer scope for an improved biomarker. We sought to generate a monoclonal antibody (mAb) targeting α-1,6-fucosylated PSA (fuc-PSA) and to develop a tissue-based immunological assay for fuc-PSA detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!