To explore efficient and cost-effective cathode material for microbial fuel cells (MFCs), the present study fabricates a new type of binder-free gas diffusion electrode made of cobalt oxide (Co3O4) micro-particles directly grown on stainless steel mesh (SSM) by using an ammonia-evaporation-induced method. In various electrochemical analyses and evaluations in batch-fed dual-chamber MFCs, the SSM/Co3O4 hybrid electrode demonstrates improved performances in terms of electrocatalytic activity, selectivity, durability and economics toward oxygen reduction reaction (ORR) in pH-neutral solution, in comparison with conventional carbon supported platinum catalyst. This study suggests a new strategy to fabricate a more effective electrode for ORR in MFCs, making it more technically and economically viable to produce electrical energy from organic materials for practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2013.12.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!