Decreasing oocyte competence with maternal aging is a major factor in mammalian infertility. One of the factors contributing to this infertility is changes to chromatin modifications, such as histone acetylation in old MII stage oocytes. Recent studies indicate that changes in histone acetylation at MII arise at the germinal vesicle (GV) stage. We hypothesised that histone methylation could also change in old GV oocytes. To test this hypothesis, we examined mono-, di- and trimethylation of histone H3 lysine 4 (H3K4 me1, me2 and me3, respectively) in young and older oocytes from 6-8- and 42-44-week-old mice, respectively. We found that H3K4 me2 and me3 decreased in older compared with young GV oocytes (100% vs. 81% and 100% vs. 87%, respectively; P<0.05). H3K4 me2 later increased in older MII oocytes (21% vs. 56%; P<0.05). We also examined the expression of genes encoding the H3K4 demethylases lysine (K)-specific demethylase 1A (Kdm1a) and retinol binding protein 2 (Rbp2). Expression of Kdm1a increased at both the mRNA and protein levels in older GV oocytes, but decreased in older MII oocytes (P<0.05), and was negatively correlated with H3K4 me2 levels. Conversely, expression of Rbp2 mRNA and protein decreased in older GV oocytes (P<0.05), and this was not correlated with H3K4 me3 levels. Finally, we showed that inhibition of Kdm1a of older oocytes at the GV stage restored levels of H3K4 me2 at the MII stage to those seen in 'young' oocytes (41% vs. 38%; P>0.05). These results suggest that changes in expression of H3K4 me2 and Kdm1a in older GV oocytes may represent a molecular mechanism underlying human infertility caused by aging.

Download full-text PDF

Source
http://dx.doi.org/10.1071/RD13293DOI Listing

Publication Analysis

Top Keywords

histone lysine
8
germinal vesicle
8
vesicle stage
8
stage oocytes
8
histone acetylation
8
acetylation mii
8
me2 me3
8
histone
5
oocytes
5
aging alters
4

Similar Publications

Nucleosomal asymmetry shapes histone mark binding and promotes poising at bivalent domains.

Mol Cell

December 2024

Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK. Electronic address:

Promoters of developmental genes in embryonic stem cells (ESCs) are marked by histone H3 lysine 4 trimethylation (H3K4me3) and H3K27me3 in an asymmetric nucleosomal conformation, with each sister histone H3 carrying only one of the two marks. These bivalent domains are thought to poise genes for timely activation upon differentiation. Here, we show that asymmetric bivalent nucleosomes recruit repressive H3K27me3 binders but fail to enrich activating H3K4me3 binders, thereby promoting a poised state.

View Article and Find Full Text PDF

The lysine-specific demethylase 5 (KDM5) family, a key post-translational modification of chromatin, can shape tumor immune microenvironment. Here, we performed an extensive clinical and bioinformatic analysis to explore the association between KDM5 mutation and tumor immunity and its impact on the outcomes in pan-cancer immunotherapy. In 2943 patients across 12 tumor types treated with immune checkpoint inhibitors, KDM5-mutant tumors were associated with favorable overall survival (hazard ratio, 0.

View Article and Find Full Text PDF

Objective: To explore the influence of SALL4 in cardiac fibroblasts on the progression of myocardial infarction.

Methods: Analysis of genes specifically expressed in myocardial infarction by bioinformatics methods; The impact of SALL4 on myocardial infarction was assessed using mouse ultrasound experiments and Masson staining; The effect of SALL4 on the expression levels of collagen-I and collagen-III in myocardial tissue was examined by immunohistochemical staining; The migration ability of cardiac fibroblasts was evaluated using a Transwell assay; The proliferative ability of cardiac fibroblasts was tested using a CCK-8 assay; The relative fluorescence intensity of α-SMA and CTGF in cardiac fibroblasts were checked through immunofluorescence staining experiment; The expression of SALL4, DOT1L, H3K79me2, P53, SHP2, YAP, nucleus-YAP, collagen-I, α-SMA, CTGF, and PAI-1 in myocardial tissues or cardiac fibroblasts was detected using western blot analysis.

Results: SALL4-specific high expression in myocardial infarction; SALL4 intensified the alterations in the heart structure of mice with myocardial infarction and worsened the fibrosis of myocardial infarction; SALL4 also promoted the expression of SALL4, DOT1L, H3K79me2, P53, SHP2, YAP, nucleus-YAP, collagen-I, collagen-III, α-SMA, CTGF, and PAI-1 in myocardial infarction tissues and cardiac fibroblasts; Subsequently, SALL4 could enhance the immunofluorescence intensity of α-SMA and CTGF; Moreover, SALL4 could promote the proliferation and migration of cardiac fibroblasts.

View Article and Find Full Text PDF

Serine 31 is a phospho-site unique to the histone H3.3 variant; mitotic phospho-Ser31 is restricted to pericentromeric heterochromatin, and disruption of phospho-Ser31 results in chromosome segregation defects and loss of p53-dependant G cell-cycle arrest. Ser31 is proximal to the H3.

View Article and Find Full Text PDF

Transcriptomic and Metabolomic Analysis Reveals Multifaceted Impact of Gcn5 Knockdown in Development.

Metabolites

December 2024

The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China.

General control nonderepressible 5 (Gcn5) is a lysine acetyltransferase (KAT) that is evolutionarily conserved across eukaryotes, with two homologs (Kat2a and Kat2b) identified in humans and one (Gcn5) in . Gcn5 contains a P300/CBP-associated factor (PCAF) domain, a Gcn5-N-acetyltransferase (GNAT) domain, and a Bromodomain, allowing it to regulate gene expression through the acetylation of both histone and non-histone proteins. In , Gcn5 is crucial for embryonic development, with maternal Gcn5 supporting early development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!