X-linked agammaglobulinemia (XLA) is a rare genetic disorder caused by mutations in the Bruton's tyrosine kinase (BTK) gene. These mutations cause defects in early B cell development. A patient with no circulating B cells and low serum immunoglobulin isotypes was studied as were his mother and sister. Monocyte BTK protein expression was evaluated by flow cytometry. The mutation was determined using PCR and followed by sequencing. Flow cytometry showed the patient lacked BTK protein expression in his monocytes while the mother and sister had 62% and 40% of the monocytes showing BTK protein expressions respectively. The patient had a novel base substitution in the first nucleotide of intron 9 in the BTK gene, and the mutation was IVS9+1G
Download full-text PDF
Source
http://dx.doi.org/10.12932/AP0304.31.4.2013 DOI Listing Publication Analysis
Top Keywords
Eur J Immunol
January 2025
Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
Many human autoimmune diseases (AIDs) are hallmarked by the presence and persistence of autoreactive B-cells. While autoreactive B-cells may frequently encounter antigens, the signals required to balance and maintain their activation and survival are mostly unknown. Understanding such signals may be important for strategies aimed at eliminating human B-cell autoreactivity.
View Article and Find Full Text PDFWorld J Gastrointest Oncol
January 2025
Department of Medical College, Jinan University, Guangzhou 510000, Guangdong Province, China.
Background: Gallbladder neuroendocrine carcinoma (NEC) represents a subtype of gallbladder malignancies characterized by a low incidence, aggressive nature, and poor prognosis. Despite its clinical severity, the genetic alterations, mechanisms, and signaling pathways underlying gallbladder NEC remain unclear.
Case Summary: This case study presents a rare instance of primary gallbladder NEC in a 73-year-old female patient, who underwent a radical cholecystectomy with hepatic hilar lymphadenectomy and resection of liver segments IV-B and V.
Sci Signal
January 2025
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
Bruton's tyrosine kinase (BTK) is a major drug target in immune cells. The membrane-binding pleckstrin homology and tec homology (PH-TH) domains of BTK are required for signaling. Dimerization of the PH-TH module strongly stimulates the kinase activity of BTK in vitro.
View Article and Find Full Text PDFiScience
November 2024
Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA.
Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, has been shown to synergize with proteasome inhibitors (PIs) in reducing the viability of cells derived from B cell malignancies, but the mechanism is not known. We report here that an off-target effect of ibrutinib causes synergy because not all BTK inhibitors exhibited the synergistic effect, and those that synergized did so even in cells that do not express BTK. The allosteric BTK inhibitor CGI-1746 showed the strongest synergy.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:
Covalent inhibitors provide persistent inhibition while maintaining excellent selectivity and efficacy by creating stable covalent connections with specific amino acids in target proteins. This technique enables the precise inhibition of previously undruggable targets, lowering the frequency of administration and potentially bypassing drug resistance. Because of these advantages, covalent inhibitors have tremendous potential in treating cancer, inflammation, and infectious illnesses, making them extremely important in modern pharmacological research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!