Tungsten nitrido complexes of the form WN(NR2)3 [R = combinations of Me, Et, (i)Pr, (n)Pr] have been synthesized as precursors for the chemical vapor deposition of WN(x)C(y), a material of interest for diffusion barriers in Cu-metallized integrated circuits. These precursors bear a fully nitrogen coordinated ligand environment and a nitrido moiety (W≡N) designed to minimize the temperature required for film deposition. Mass spectrometry and solid state thermolysis of the precursors generated common fragments by loss of free dialkylamines from monomeric and dimeric tungsten species. DFT calculations on WN(NMe2)3 indicated the lowest gas phase energy pathway for loss of HNMe2 to be β-H transfer following formation of a nitrido bridged dimer. Amorphous films of WN(x)C(y) were grown from WN(NMe2)3 as a single source precursor at temperatures ranging from 125 to 650 °C using aerosol-assisted chemical vapor deposition (AACVD) with pyridine as the solvent. Films with stoichiometry approaching W2NC were grown between 150 and 450 °C, and films grown at 150 °C were highly smooth, with a RMS roughness of 0.5 nm. In diffusion barrier tests, 30 nm of film withstood Cu penetration when annealed at 500 °C for 30 min.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja4117582DOI Listing

Publication Analysis

Top Keywords

chemical vapor
12
vapor deposition
12
tungsten nitrido
8
nitrido complexes
8
deposition wnxcy
8
diffusion barriers
8
grown 150
8
precursors
4
complexes precursors
4
precursors low
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!