Let-7a functions as a tumor suppressor in Ewing's sarcoma cell lines partly by targeting cyclin-dependent kinase 6.

DNA Cell Biol

1 The Department of Orthopedic Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China .

Published: March 2014

MicroRNAs play an important role in the development and progression of Ewing's sarcoma (ES). Especially, the expression of let-7a has been reported to be significantly downregulated in various cancers, and can affect the initiation and maintenance of tumor progression. However, the relative effects of let-7a on ES cells and relative mechanisms are largely unknown. In this study, we identified the underexpression of let-7a in human ES cells comparing with the human mesenchymal stem cells. Then, we sought to compensate for its loss through exogenous transfection with let-7a mimic into ES cell lines A673 and SK-ES-1. Restored let-7a expression inhibited cell proliferation, migration, as well as invasion; arrested cell cycle progression; and induced cell apoptosis of both cell lines. Moreover, bioinformatic prediction suggested that cyclin-dependent kinase 6 (CDK6), which is overexpressed and functions as an oncoprotein in ES cells, is a putative target gene of let-7a. Using mRNA and protein expression analysis and luciferase assays, we further identified the target role of CDK6. Finally, we found that restored CDK6 expression in ES cells that had been treated with let-7a mimic before could partly dampen let-7a-mediated tumor suppression. Taken together, our results showed that let-7a acted as a tumor suppressor in ES by targeting CDK6, and it may provide novel diagnostic and therapeutic options for human Ewing sarcoma clinical operation in future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942682PMC
http://dx.doi.org/10.1089/dna.2013.2179DOI Listing

Publication Analysis

Top Keywords

cell lines
12
let-7a
9
tumor suppressor
8
ewing's sarcoma
8
cyclin-dependent kinase
8
let-7a mimic
8
cell
6
cells
5
let-7a functions
4
tumor
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Sage Bionetworks, Seattle, WA, USA.

Background: There is an urgent need for new therapeutic and diagnostic targets for Alzheimer's disease (AD). Dementia afflicts roughly 55 million individuals worldwide, and the prevalence is increasing with longer lifespans and the absence of preventive therapies. Given the demonstrated heterogeneity of Alzheimer's disease in biological and genetic components, it is critical to identify new therapeutic approaches.

View Article and Find Full Text PDF

Background: Our previous study identified that Sildenafil (a phosphodiesterase type 5 [PDE5] inhibitor) is a candidate repurposable drug for Alzheimer's Disease (AD) using in silico network medicine approach. However, the clinically meaningful size and mechanism-of-actions of sildenafil in potential prevention and treatment of AD remind unknown.

Method: We conducted new patient data analyses using both the MarketScan® Medicare with Supplemental database (n = 7.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

MRC Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, United Kingdom.

Background: Accumulation of misfolded a-synuclein protein in intracellular inclusion bodies of dopaminergic neurons underlies the pathogenesis of synucleinopathies, which include Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA). Therefore, clearance of misfolded α-synuclein from dopaminergic neurons could in principle offer a an approach for modifying synucleinopathies, which currently remain untreatable.

Method: In this study, we employ the Affinity-directed PROtein Missile (AdPROM) system consisting of the substrate receptor of the CUL2-E3 ligase complex VHL and a nanobody selectively recognising the human α-synuclein protein RESULT: We demonstrate targeted degradation of endogenous α-synuclein from human cell lines with exquisite selectivity.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Sharp Therapeutics, Pittsburgh, PA, USA.

Background: Progranulin (GRN) plays a critical role in familial frontotemporal dementia (fFTD), where GRN haploinsufficiency leads to reduction in PGRN levels in the brain, resulting in degeneration of neurons in the frontal lobe of brain responsible for personality, language, and behavior. FTD is the most common dementia in people under 60. Sortilin (Sort1), expressed by neurons, endocytoses, and delivers PGRN rapidly to lysosomes for degradation.

View Article and Find Full Text PDF

Background: Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus.

Method: We generated five different genomic excisions at the C9orf72 locus in a patient-derived iPSC line and a WT line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 FTD/ALS in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!