Molybdate reduction to molybdenum blue by an Antarctic bacterium.

Biomed Res Int

Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

Published: July 2014

A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo⁶⁺ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870105PMC
http://dx.doi.org/10.1155/2013/871941DOI Listing

Publication Analysis

Top Keywords

molybdate reduction
16
molybdenum blue
8
partially purified
8
molybdate
6
reduction molybdenum
4
blue antarctic
4
antarctic bacterium
4
bacterium molybdenum-reducing
4
molybdenum-reducing bacterium
4
bacterium antarctica
4

Similar Publications

Iron-molybdenum cofactor synthesis by a thermophilic nitrogenase devoid of the scaffold NifEN.

Proc Natl Acad Sci U S A

November 2024

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid e Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, Madrid 28223, Spain.

The maturation and installation of the active site metal cluster (FeMo-co, FeSCMo--homocitrate) in Mo-dependent nitrogenase requires the protein product of the gene for production of the FeS cluster precursor (NifB-co, [FeSC]) and the action of the maturase complex composed of the protein products from the and genes. However, some putative diazotrophic bacteria, like sp. RS-1, lack the genes, suggesting an alternative pathway for maturation of FeMo-co that does not require NifEN.

View Article and Find Full Text PDF

leaves were converted to a porous graphitized carbon (GPLC) material via a high-temperature pyrolysis method by employing iron salt as a catalyst. A cobalt molybdate (CoMoO)-and-GPLC composite (CoMoO/GPLC) was then prepared by engineering CoMoO nanorods in situ, grown on GPLC. N adsorption-desorption isothermal curves and a pore size distribution curve verify that the proposed composite possesses a porous structure and a large specific surface area, which are favorable for charge and reactant transport and the rapid escape of O bubbles.

View Article and Find Full Text PDF

Changes in activity and microbial community composition of Anammox-HAP granules during long-term preservation under different conditions.

Bioresour Technol

December 2024

Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan. Electronic address:

Preservation of anammox granular sludge is important for anammox technology applications. Although previous studies have explored preservation methods, their long-term effects on microbial communities and functional genes remain underexplored. This study investigated the long-term preservation of anammox-hydroxyapatite (HAP) granules with storage durations of up to six years and examined the effects of different preservation methods.

View Article and Find Full Text PDF

Methylation of mercury and tin by estuarine microbial mats.

Mar Pollut Bull

November 2024

Skidaway Institute of Oceanography, University of Georgia, 10 Ocean Science Circle, Savannah, GA 31411, USA.

After tin and mercury salts were added to estuarine microbial mats increasing amounts of methyltin and methylmercury, respectively, were formed over a 30 to 100 hour time period. Inhibition of the methylation by molybdate, a metabolic inhibitor of sulfate reduction, stimulation by pyruvate addition and lack of methylation by sterilized mats, were evidence that sulfate reducing bacteria within the mats were responsible for the tin and mercury methylation. Methyl mercury was formed from mercuric chloride and mercuric cysteine, but not from mercuric sulfide.

View Article and Find Full Text PDF

In nature, methylmercury (MeHg) is primarily generated through microbial metabolism, and the ability of bacteria to methylate Hg(II) depends on both bacterial properties and environmental factors. It is widely known that, as a metabolic analog, molybdate can inhibit the sulfate reduction process and affect the growth and methylation of sulfate-reducing bacteria (SRB). However, after it enters the cell, molybdate can be involved in various intracellular metabolic pathways as a molybdenum cofactor; whether fluctuations in its concentration affect the growth and methylation of aerobic mercury methylating strains remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!