Brain tumors can have different shapes or locations, making their identification very challenging. In functional MRI, it is not unusual that patients have only one anatomical image due to time and financial constraints. Here, we provide a modified automatic lesion identification (ALI) procedure which enables brain tumor identification from single MR images. Our method rests on (A) a modified segmentation-normalization procedure with an explicit "extra prior" for the tumor and (B) an outlier detection procedure for abnormal voxel (i.e., tumor) classification. To minimize tissue misclassification, the segmentation-normalization procedure requires prior information of the tumor location and extent. We therefore propose that ALI is run iteratively so that the output of Step B is used as a patient-specific prior in Step A. We test this procedure on real T1-weighted images from 18 patients, and the results were validated in comparison to two independent observers' manual tracings. The automated procedure identified the tumors successfully with an excellent agreement with the manual segmentation (area under the ROC curve = 0.97 ± 0.03). The proposed procedure increases the flexibility and robustness of the ALI tool and will be particularly useful for lesion-behavior mapping studies, or when lesion identification and/or spatial normalization are problematic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3865426 | PMC |
http://dx.doi.org/10.3389/fnins.2013.00241 | DOI Listing |
Sci Rep
January 2025
Neurology Unit, Department of Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
Astrocytoma is a common type of glioma and a frequent cause of brain tumour-related epilepsy. Although the link between glioma and epilepsy is well established, the precise mechanisms underlying epileptogenesis in astrocytoma remain poorly understood. In this study, we performed proteomic analysis of astrocytoma tissue from patients with and without seizures using mass spectrometry-based techniques.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Neurology, University of Chicago, 5841 South Maryland Avenue, Chicago, IL, 60637, USA.
Positional downbeat nystagmus (pDBN) is a common finding in dizzy patients, with etiologies ranging from benign paroxysmal positional vertigo (BPPV) to central vestibular lesions. Although peripheral pDBN often presents with distinct clinical features that differentiate it from BPPV, diagnosing its etiology can be challenging. A thorough clinical evaluation, including the physical characteristics of the nystagmus, response to positional maneuvers, and neurological findings, is often sufficient to diagnose conditions that provoke pDBN such as anterior canal BPPV, atypical posterior canal BPPV, and central causes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery, Xinxiang Central Hospital, 56 Jinsui Avenue, Weibin District, Xinxiang, 453000, Henan, China.
Pituitary Neuroendocrine Tumors (PitNETs), often treated via endonasal transsphenoidal resection, present a risk for postoperative surgical site infections (SSIs), including intracranial infections such as meningitis. Identifying the risk factors associated with these infections is crucial for improving surgical outcomes and patient care. A retrospective study was conducted at a medical center from June 2020 to June 2023.
View Article and Find Full Text PDFCancer Lett
January 2025
School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China; Peking Union Medical College Hospital, Beijing, 100730, China. Electronic address:
It has become increasingly recognized that neural signals can profoundly influence the prognosis of various cancer types. In the past years, we have witnessed "cancer neuroscience," which primarily focuses on the complex crosstalk between tumors and neural signals, emerging as a new, multidisciplinary direction of biomedical science. This review aims to summarize the current knowledge of this research frontier, with an emphasis on the neuroimmune mechanisms enacted through the reciprocal interactions between tumors and the central or peripheral nervous system.
View Article and Find Full Text PDFElectromagn Biol Med
January 2025
Department of Mathematics, University of Gour Banga, Malda, India.
Biomagnetic fluid dynamics (BFD) is an emerging and promising field within fluid mechanics, focusing on the dynamics of bio-fluids like blood in the presence of magnetic fields. This research is crucial in the medical arena for applications such as medication delivery, diagnostic and therapeutic procedures, prevention of excessive bleeding, and treatment of malignant tumors using magnetic particles. This study delves into the intricacies of blood flow induced by cilia, carrying trihybrid nanoparticles (gold, copper, and titania), within a catheterized arterial annulus under a robust magnetic field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!