Myosin light chain kinase accelerates vesicle endocytosis at the calyx of Held synapse.

J Neurosci

Institute of Molecular Medicine and Genetics and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912.

Published: January 2014

Neuronal activity triggers endocytosis at synaptic terminals to retrieve efficiently the exocytosed vesicle membrane, ensuring the membrane homeostasis of active zones and the continuous supply of releasable vesicles. The kinetics of endocytosis depends on Ca(2+) and calmodulin which, as a versatile signal pathway, can activate a broad spectrum of downstream targets, including myosin light chain kinase (MLCK). MLCK is known to regulate vesicle trafficking and synaptic transmission, but whether this kinase regulates vesicle endocytosis at synapses remains elusive. We investigated this issue at the rat calyx of Held synapse, where previous studies using whole-cell membrane capacitance measurement have characterized two common forms of Ca(2+)/calmodulin-dependent endocytosis, i.e., slow clathrin-dependent endocytosis and rapid endocytosis. Acute inhibition of MLCK with pharmacological agents was found to slow down the kinetics of both slow and rapid forms of endocytosis at calyces. Similar impairment of endocytosis occurred when blocking myosin II, a motor protein that can be phosphorylated upon MLCK activation. The inhibition of endocytosis was not accompanied by a change in Ca(2+) channel current. Combined inhibition of MLCK and calmodulin did not induce synergistic inhibition of endocytosis. Together, our results suggest that activation of MLCK accelerates both slow and rapid forms of vesicle endocytosis at nerve terminals, likely by functioning downstream of Ca(2+)/calmodulin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608165PMC
http://dx.doi.org/10.1523/JNEUROSCI.3744-13.2014DOI Listing

Publication Analysis

Top Keywords

endocytosis
12
vesicle endocytosis
12
myosin light
8
light chain
8
chain kinase
8
calyx held
8
held synapse
8
inhibition mlck
8
slow rapid
8
rapid forms
8

Similar Publications

There are few in vitro models available to study microglial physiology in a homeostatic context. Recent approaches include the human induced pluripotent stem cell model, but these can be challenging for large-scale assays and may lead to batch variability. To advance our understanding of microglial biology while enabling scalability for high-throughput assays, we developed an inducible immortalized murine microglial cell line using a tetracycline expression system.

View Article and Find Full Text PDF

The process of viral entry into host cells is crucial for the establishment of infection and the determination of viral pathogenicity. A comprehensive understanding of entry pathways is fundamental for the development of novel therapeutic strategies. Standard techniques for investigating viral entry include confocal microscopy and flow cytometry, both of which provide complementary qualitative and quantitative data.

View Article and Find Full Text PDF

NUMB alternative splicing and isoform specific functions in development and disease.

J Biol Chem

January 2025

The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada, M5G 2M9. Electronic address:

The NUMB gene encodes a conserved adaptor protein with roles in asymmetric cell division and cell fate determination. First described as an inhibitor of Notch signaling, multi-functional NUMB proteins regulate multiple cellular pathways through protein complexes with ubiquitin ligases, polarity proteins and the endocytic machinery. The vertebrate NUMB protein isoforms were identified over two decades ago, yet the majority of functional studies exploring NUMB function in endocytosis, cell migration and adhesion, development and disease have largely neglected the potential for distinct isoform activity in design and interpretation.

View Article and Find Full Text PDF

Interactions between bacteriophages with mammalian immune cells are of great interest and most phages possess at least one molecular pattern (nucleic acid, sugar residue, or protein structure) that is recognizable to the immune system through pathogen associated molecular pattern (PAMP) receptors (i.e., TLRs).

View Article and Find Full Text PDF

Selected Mechanisms of Action of Bacteriophages in Bacterial Infections in Animals.

Viruses

January 2025

Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland.

Bacteriophages, as ubiquitous bacterial viruses in various natural ecosystems, play an important role in maintaining the homeostasis of the natural microbiota. For many years, bacteriophages were not believed to act on eukaryotic cells; however, recent studies have confirmed their ability to affect eukaryotic cells and interact with the host immune system. Due to their complex protein structure, phages can also directly or indirectly modulate immune processes, including innate immunity, by modulating phagocytosis and cytokine reactions, as well as acquired immunity, by producing antibodies and activating effector cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!