Subsurface transport behavior of micro-nano bubbles and potential applications for groundwater remediation.

Int J Environ Res Public Health

Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China.

Published: December 2013

Micro-nano bubbles (MNBs) are tiny bubbles with diameters on the order of micrometers and nanometers, showing great potential in environmental remediation. However, the application is only in the beginning stages and remains to be intensively studied. In order to explore the possible use of MNBs in groundwater contaminant removal, this study focuses on the transport of MNBs in porous media and dissolution processes. The bubble diameter distribution was obtained under different conditions by a laser particle analyzer. The permeability of MNB water through sand was compared with that of air-free water. Moreover, the mass transfer features of dissolved oxygen in water with MNBs were studied. The results show that the bubble diameter distribution is influenced by the surfactant concentration in the water. The existence of MNBs in pore water has no impact on the hydraulic conductivity of sand. Furthermore, the dissolved oxygen (DO) in water is greatly increased by the MNBs, which will predictably improve the aerobic bioremediation of groundwater. The results are meaningful and instructive in the further study of MNB research and applications in groundwater bioremediation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3924455PMC
http://dx.doi.org/10.3390/ijerph110100473DOI Listing

Publication Analysis

Top Keywords

micro-nano bubbles
8
applications groundwater
8
bubble diameter
8
diameter distribution
8
dissolved oxygen
8
oxygen water
8
mnbs
6
water
6
subsurface transport
4
transport behavior
4

Similar Publications

Sudden biological contamination in Drinking Water Distribution System (DWDS) significantly threatens the safety of drinking water, with E. coli invasions being particularly hazardous to human health. Traditional disinfection methods (i.

View Article and Find Full Text PDF

Preparation and evaluation of ozone micro-nano bubbles ice for Litchi precooling.

Food Chem

January 2025

Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Institute of Food Testing, Hainan Academy of Inspection and Testing, Haikou 570314, China. Electronic address:

Ozone (O) is an effective agent for post-harvest fruit preservation against diverse microorganisms. In this study, a cost-effective ozone micro-nano bubbles ice (O-MNBI) was prepared, characterized, and subsequently used to precool litchi. The optimal protocols for O-MNBI production were as follows: water (2 °C, pH = 7) was pumped into a micro-nano O bubble generator for 10 min aeration treatment.

View Article and Find Full Text PDF

The pharmaceutical industry plays a crucial role in driving global economic growth but also poses substantial environmental challenges, particularly in the efficient treatment of production wastewater. This study investigates the efficacy of micro-nano bubble (MNB) ozonation for treating high-strength ibuprofen (IBU)-laden wastewater (49.9 ± 2.

View Article and Find Full Text PDF

The culture of A549 cells and its secreted cytokine IL-6 monitoring on the designed multifunctional microfluidic chip.

Talanta

April 2025

Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044, China; School of Optoelectronics Engineering, Chongqing University, Shapingba, Chongqing, 400044, China. Electronic address:

A multifunctional microfluidic chip integrated with perfusion cell culture and in situ SERS detection of cell secretion was designed and developed for the detection of IL-6 secretion from LPS-stimulation of A549 cells in this paper. Researching works were focused on A549 cell activity and secretion in the constructed LPS-stimulated A549 cells model. On the designed microchip, a bubble trap chamber was designed to remove the bubbles in the culture medium which could also be simultaneously preheated by a split hot plate.

View Article and Find Full Text PDF

Efficacy of Air and Oxygen Micro-nano Bubble Waters Against Colletotrichum gloeosporioides and Impacts on Postharvest Quality of 'Fan Retief' Guava Fruit.

J Food Prot

January 2025

Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Matieland, South Africa; AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Matieland, South Africa. Electronic address:

This study focused on the application of micro-nano bubbles (MNBs) water generated using air or oxygen (O), as an alternative to chlorine-based wash for fruits. For the in vitro and in vivo investigation, 10 spore or conidia/mL Colletotrichum gloeosporioides suspension was used, and treated with solutions of air- or O-MNB for 30- or 60-min, sodium hypochlorite (NaOCl), and untreated (as control). In the second experiment, freshly harvested guava fruits were washed with tap water (control), NaOCl (standard practice), air-, or O-MNB (for 15- or 30-min).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!