AI Article Synopsis

Article Abstract

Metal transparent conductive films (TCFs) have received increasing attention in various flexible electronics. However, there are two crucial issues that need to be addressed: (1) strong adhesion between metal TCFs and the flexible substrates and (2) high conductivity with short treatment time and low process temperature, simultaneous with high transparency. In this paper, a site-selective electroless plating combination with poly(dopamine) modification is demonstrated to fabricate a new high performance transparent conductor composed of a periodic two-dimensional silver network on a heat sensitive flexible substrate at room temperature. The TCF reveals an extremely high ratio of DC to optical conductivity (σ(DC)/σ(Op)) value in the range of 350-1000 for various fabricated silver grid films. It also exhibits particularly strong adhesion, which can resist ultrasonic treatment in water or organic solvent for several hours. Its reliability (stable for at least 1440 h during 85 °C/85% RH aging) meets the essential requirements for microelectronic applications. Using this method, we obtain silver grid film on a flexible polyethylene terephthalate substrate with optical transmittance of 91% and sheet resistance of 8 Ohm sq(-1), which is comparable to or better than the commercially available indium tin oxide.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am402900uDOI Listing

Publication Analysis

Top Keywords

silver grid
12
transparent conductive
8
room temperature
8
strong adhesion
8
flexible
5
site-selective growth
4
growth patterned
4
silver
4
patterned silver
4
grid networks
4

Similar Publications

Photocatalytic water disinfection technology is highly promising in off-grid areas due to abundant year-round solar irradiance. However, the practical use of powdered photocatalysts is impeded by limited recovery and inefficient inactivation of stress-resistant bacteria in oligotrophic surface water. Here we prepare a floatable monolithic photocatalyst with ZIF-8-NH loaded Ag single atoms and nanoparticles (Ag/ZIF).

View Article and Find Full Text PDF

The conductivity of AgNWs electrodes can be enhanced by incorporating Ag grids, thereby facilitating the development of large-area flexible organic solar cells (FOSCs). Ag grids from vacuum evaporation offer the advantages of simple film formation, adjustable thickness, and unique structure. However, the complex 3D multi-component structure of AgNWs electrodes will exacerbate the aggregation of large Ag particles, causing the device short circuits.

View Article and Find Full Text PDF

This study uses an oceanic energy budget to estimate the ocean heat transport convergence in the North Atlantic during 2005-2018. The horizontal convergence of the ocean heat transport is estimated using ocean heat content tendency primarily derived from satellite altimetry combined with space gravimetry. The net surface energy fluxes are inferred from mass-corrected divergence of atmospheric energy transport and tendency of the ECMWF ERA5 reanalysis combined with top-of-the-atmosphere radiative fluxes from the clouds and the Earth's radiant energy system project.

View Article and Find Full Text PDF

Surfactin lipopeptides (LPs) are a compelling class of biosurfactants with notable antimicrobial and anticancer properties. This study presents a novel approach by integrating bioinformatics tools to assess the drug potential of Surfactin, specifically focusing on its antibacterial, antifungal activities, and cancer cell-line toxicity. Silver nanoparticles (AgNPs) were synthesized using Surfactin, a biosurfactant derived from KLP2016, as a capping agent, both in the presence and absence of Surfactin, to evaluate its impact on nanoparticle stability and bioactivity.

View Article and Find Full Text PDF

Green Pesticide High Activity Based on TiO Nanosuspension Incorporated Silver Microspheres Against .

Indian J Microbiol

December 2024

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Kendari, 93232 Southeast Sulawesi Indonesia.

Cocoa pod production has experienced a significant decline due to attacks by the () fungus, which is the main cause of cocoa pod rot. To overcome this problem, Titanium dioxide (TiO) was chosen because of its potential as an antifungal, and its activity can be increased by adding silver nanoparticles (AgNPs). This research aims to determine the antifungal properties of TiO-Ag nanosuspension on the growth of under exposure to UV, Visible and without irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!