Taking a long-term fertilization experiment in Taoyuan Agro-ecosystem Research Station under Chinese Academy of Sciences as the platform, and selecting four treatments (no fertilization, CK; rice straw returning, C; nitrogen, phosphorus and potassium fertilization, NPK; and NPK+C) as the objects, soil samples were collected at the tillering, booting and maturing stages of rice, and the abundance, composition and diversity of nifH-containing bacterial community were measured by real-time quantitative PCR and terminal restriction fragment length polymorphism (T-RFLP), aimed to understand the effects of rice straw returning on the nifH-containing bacterial community in paddy soil. Compared with CK, treatments NPK+C and NPK increased the abundance of nifH-containing microorganisms significantly (except at tillering stage), and NPK+C had the highest abundance of nifH-containing microorganisms. Under the effects of long-term fertilization, the composition of nifH gene community in CK differed obviously from that in the other three treatments. The nifH composition had definite difference between C and NPK, but less difference between NPK and NPK+C. Long-term fertilization did not induce significant changes in nifH diversity. Therefore, long-term rice straw returning not only induced the changes of nifH gene community composition, but also resulted in a significant increase in the abundance of nifH-containing community, and hence, the increase of soil nitrogen fixing capacity.
Download full-text PDF |
Source |
---|
Sci Rep
January 2025
Department of Botany, Lahore College for Women University, Lahore, Pakistan.
The present study was designed to highlight the ameliorative role of iron nanoparticles (FeNPs) against drought stress in spinach (Spinacia oleracea L.) plants. A pot experiment was performed in two-way completely randomize design with three replicates.
View Article and Find Full Text PDFJ Anim Physiol Anim Nutr (Berl)
January 2025
Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.
The objective of this study was to examine the impact of black soldier fly larval oil (BSFO) on feed consumption, nutritional digestibility, ruminal characteristics and methane (CH) estimation in Thai-indigenous steers. Four male Thai native steers (Bos indicus) weighing 383 ± 9.0 kg were used in this investigation.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Sustainable Bioproducts, Mississippi State University, P.O. Box 9820, Starkville, MS 39762, USA.
This study explores the potential of using underutilized materials from agricultural and forestry systems, such as rice husk, wheat straw, and wood strands, in developing corrugated core sandwich panels as a structural building material. By leveraging the unique properties of these biobased materials within a corrugated geometry, the research presents a novel approach to enhancing the structural performance of such underutilized biobased materials. These biobased materials were used in different lengths to consider the manufacturing feasibility of corrugated panels and the effect of fiber length on their structural performance.
View Article and Find Full Text PDFMolecules
December 2024
Biochar Engineering & Technology Research Center of Liaoning Province, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.
Nanomaterials (Basel)
January 2025
Faculty of Engineering & Technology, Marwadi University, Rajkot-Morbi Road, Rajkot 360003, Gujarat, India.
Lead (Pb) is a highly toxic heavy metal that causes significant health hazards and environmental damage. Thus, the detection and removal of Pb ions in freshwater sources are imperative for safeguarding public health and the environment. Moreover, the transformation of single resources into multiple high-value products is vital for achieving sustainable development goals (SDGs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!