Quercetin is a dietary flavonoid with known antitumor effects against several types of cancers by promoting apoptotic cell death and inducing cell cycle arrest. However, U373MG malignant glioma cells expressing mutant p53 are resistant to a 24 h quercetin treatment. In this study, the anticancer effect of quercetin was reevaluated in U373MG cells, and quercetin was found to be significantly effective in inhibiting proliferation of U373MG cells in a concentration-dependent manner after 48 and 72 h of incubation. Quercetin induced U373MG cell death through apoptosis, as evidenced by the increased number of cells in the sub-G1 phase, the appearance of fragmented nuclei, decreased mitochondrial membrane potential, proteolytic activation of caspase-3 and caspase-7, an increase in caspase-3 and 9 activities, and degradation of poly(ADP-ribose) polymerase protein. Furthermore, quercetin activated JNK and increased the expression of p53, which translocated to the mitochondria and simultaneously led to the release of cytochrome c from mitochondria to the cytosol. We also found that quercetin induced autophagy. Pretreatment with chloroquine, an autophagy inhibitor, strongly augmented apoptosis in U373MG cells, indicating that quercetin induced protective autopagy in U373MG cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863523 | PMC |
http://dx.doi.org/10.1155/2013/596496 | DOI Listing |
Nutrients
October 2024
Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco.
Background: Oxidative stress and chronic inflammation, at both the systemic and the central level, are critical early events in atherosclerosis and Alzheimer's disease (AD).
Purpose: To investigate the oxidative stress-, inflammation-, and Tau-phosphorylation-lowering effects of pomegranate polyphenols (PPs) (punicalagin, ellagic acid, peel, and aril extracts).
Methods: We used flow cytometry to quantify the protein expression of proinflammatory cytokines (IL-1β) and anti-inflammatory mediators (IL-10) in THP-1 macrophages, as well as M1/M2 cell-specific marker (CD86 and CD163) expression in human microglia HMC3 cells.
J Neurooncol
October 2024
Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070, Würzburg, Germany.
Purpose: Glioblastoma (GBM) is the most prevalent, malignant, primary brain tumor in adults, characterized by limited treatment options, frequent relapse, and short survival after diagnosis. Until now, none of the existing therapy and treatment approaches have proven to be an effective cure. The availability of predictive human blood-tumor barrier (BTB) test systems that can mimic in-vivo pathophysiology of GBM would be of great interest in preclinical research.
View Article and Find Full Text PDFAntioxidants (Basel)
February 2024
College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.
Alzheimer's disease (AD) is the leading cause of dementia and is one of the neurodegenerative diseases that are caused by neuronal death due to various triggers. Neuroinflammation plays a critical role in the development of AD. The neuroinflammatory response is manifested by pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α; various chemokines; nitrous oxide; and reactive oxygen species.
View Article and Find Full Text PDFMed Oncol
July 2023
Faculty of Medicine, Department of Medical Biology, Van Yuzuncu Yıl University, Van, Turkey.
Glioblastoma is the most aggressive and fatal form of brain cancer. Despite new advancements in treatment, the desired outcomes have not been achieved. Temozolomide (TMZ) is the first-choice treatment for the last two decades and has improved survival rates.
View Article and Find Full Text PDFInt J Mol Sci
August 2022
Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
The type I interferon (IFN) response is one of the primary defense systems against various pathogens. Although rubella virus (RuV) infection is known to cause dysfunction of various organs and systems, including the central nervous system, little is known about how human neural cells evoke protective immunity against RuV infection, leading to controlling RuV replication. Using cultured human neural cells experimentally infected with RuV RA27/3 strain, we characterized the type I IFN immune response against the virus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!