CLC transporters catalyze transmembrane exchange of chloride for protons. Although a putative pathway for Cl(-) has been established, the pathway of H(+) translocation remains obscure. Through a highly concerted computational and experimental approach, we characterize microscopic details essential to understanding H(+)-translocation. An extended (0.4 µs) equilibrium molecular dynamics simulation of membrane-embedded, dimeric ClC-ec1, a CLC from Escherichia coli, reveals transient but frequent hydration of the central hydrophobic region by water molecules from the intracellular bulk phase via the interface between the two subunits. We characterize a portal region lined by E202, E203, and A404 as the main gateway for hydration. Supporting this mechanism, site-specific mutagenesis experiments show that ClC-ec1 ion transport rates decrease as the size of the portal residue at position 404 is increased. Beyond the portal, water wires form spontaneously and repeatedly to span the 15-Å hydrophobic region between the two known H(+) transport sites [E148 (Glu(ex)) and E203 (Glu(in))]. Our finding that the formation of these water wires requires the presence of Cl(-) explains the previously mystifying fact that Cl(-) occupancy correlates with the ability to transport protons. To further validate the idea that these water wires are central to the H(+) transport mechanism, we identified I109 as the residue that exhibits the greatest conformational coupling to water wire formation and experimentally tested the effects of mutating this residue. The results, by providing a detailed microscopic view of the dynamics of water wire formation and confirming the involvement of specific protein residues, offer a mechanism for the coupled transport of H(+) and Cl(-) ions in CLC transporters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918786 | PMC |
http://dx.doi.org/10.1073/pnas.1317890111 | DOI Listing |
Langmuir
December 2024
Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou 310018, China.
The transportation and carrying behavior of underwater bubbles have been widely used for an underwater microactuator, cargo displacement assembly, and drug delivery. This study explores a method for underwater cargo transportation using sliding bubbles as a vehicle with directionally guided superhydrophobic wires. By exploitation of the adhesion between superhydrophobic surfaces and bubble interfaces, a bubble is able to transport a superhydrophobic O-ring along a superhydrophobic wire, effectively delivering the O-ring to the water surface.
View Article and Find Full Text PDFBioinspir Biomim
December 2024
Biomimetics Laboratory, The University of Auckland Auckland Bioengineering Institute, 70 Symonds Street, Level 6, Auckland, 1010, NEW ZEALAND.
The propulsive fins of ray-finned fish are used for large scale locomotion and fine maneuvering, yet also provide sensory feedback regarding hydrodynamic loading and the surrounding environment. This information is gathered via nerve cells in the webbing between their fin rays. A similar bioinspired system that can gather force feedback from fin motion could enable valuable insight into robotic underwater locomotion improving swimming efficiency and orientation.
View Article and Find Full Text PDFJ Appl Clin Med Phys
December 2024
Department of Radiation Oncology, Duke University, Durham, North Carolina, USA.
Purpose: This paper outlines the commissioning of the Varian (VMS, Varian Medical Systems, Palo Alto, CA) Universal Interstitial Cylinder (UIC) applicator set for Ir-192 HDR brachytherapy. The UIC was commissioned for use with CT and MRI and a custom phantom was designed to avoid the introduction of water-like materials into the needle guide tracks. Various marker strands were investigated to determine which allowed the most accurate reconstruction of source positions.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
School of Materials and Chemistry Engineering, Minjiang University, Fuzhou 350108, China.
This study focuses on the development of polymer-bioglass composite bone scaffolds for the treatment of bone defects. PCL particles and 45s5 bioglass powder were employed as raw materials to fabricate PCL/45s5 composite wires with mass fractions of 5 wt%, 10 wt%, and 20 wt% via the twin-screw extrusion method. A cylindrical porous model was established using 3D modeling software, and a porous composite scaffold was constructed through the melt deposition manufacturing process.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
As a unique form of TiO, TiO nanotube arrays (TiONTAs) have been widely used. TiONTAs are usually prepared by Ti foil, with little research reporting its preparation by Ti mesh. In this paper, TiONTAs are prepared on a Ti mesh surface via an anodic oxidation method in the F-containing electrolyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!