We showed that scanning white light interferometry (SWLI) can provide nanometer depth resolution in 3D topographic analysis of electrospun drug-loaded nanofibrous mats without sample preparation. The method permits rapidly investigating geometric properties (e.g. fiber diameter, orientation and morphology) and surface topography of drug-loaded nanofibers and nanomats. Electrospun nanofibers of a model drug, piroxicam (PRX), and hydroxypropyl methylcellulose (HPMC) were imaged. Scanning electron microscopy (SEM) served as a reference method. SWLI 3D images featuring 29 nm by 29 nm active pixel size were obtained of a 55 μm × 40 μm area. The thickness of the drug-loaded non-woven nanomats was uniform, ranging from 2.0 μm to 3.0 μm (SWLI), and independent of the ratio between HPMC and PRX. The average diameters (n=100, SEM) for drug-loaded nanofibers were 387 ± 125 nm (HPMC and PRX 1:1), 407 ± 144 nm (HPMC and PRX 1:2), and 290 ± 100 nm (HPMC and PRX 1:4). We found advantages and limitations in both techniques. SWLI permits rapid non-contacting and non-destructive characterization of layer orientation, layer thickness, porosity, and surface morphology of electrospun drug-loaded nanofibers and nanomats. Such analysis is important because the surface topography affects the performance of nanomats in pharmaceutical and biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2013.12.041 | DOI Listing |
Pharmaceutics
September 2019
Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
We investigated and monitored in situ the wetting and dissolution properties of polymeric nanofibers and determined the solid-state of a drug during dissolution. Piroxicam (PRX) was used as a low-dose and poorly-soluble model drug, and hydroxypropyl methylcellulose (HPMC) and polydextrose (PD) were used as carrier polymers for electrospinning (ES). The initial-stage dissolution of the nanofibers was monitored in situ with three-dimensional white light microscopic interferometry (SWLI) and high-resolution optical microscopy.
View Article and Find Full Text PDFCryst Growth Des
December 2017
Department of Chemical Engineering, Loughborough University, Ashby Road, Loughborough, Leicestershire LE11 3TU, U.K.
Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry.
View Article and Find Full Text PDFInt J Pharm
February 2015
Department of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia. Electronic address:
Electrospinning was introduced as a novel technique for preparing controlled-release (CR) amorphous solid dispersions (SD) and polymeric nanofibers of a poorly water-soluble drug. Piroxicam (PRX) was used as a low-dose poorly-soluble drug and hydroxypropyl methylcellulose (HPMC) as an amorphous-state stabilising carrier polymer in nanofibers. Raman spectroscopy, X-ray powder diffraction (XPRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used in the physical characterisation of the CR-SD nanofibers.
View Article and Find Full Text PDFInt J Pharm
February 2014
Department of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia. Electronic address:
We showed that scanning white light interferometry (SWLI) can provide nanometer depth resolution in 3D topographic analysis of electrospun drug-loaded nanofibrous mats without sample preparation. The method permits rapidly investigating geometric properties (e.g.
View Article and Find Full Text PDFInt J Pharm
November 2013
Department of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia. Electronic address:
During aqueous drug-layer coating, drug substance(s) are exposed to water and elevated temperatures which can lead to water-mediated process induced transformations (PITs). The effects of aqueous drug-layer coating of pellets (Cellets(®)) on the anhydrous piroxicam, PRX, were investigated in the miniaturized coating equipment and with free films. Hydroxypropyl methylcellulose (HPMC) was used as a carrier coating polymer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!