Objective: To observe the effects of hepatocyte growth factor (HGF) derived from tumor microenvironment and/or afatinib on the growth of human lung adenocarcinoma H1975 cells and explore the potential mechanisms by which HGF induces primary resistance to afatinib.

Methods: The effects of HGF, TGF-α and afatinib on the growth of H1975 cells were evaluated by MTT assay. The HGF concentrations of normal human fetal lung fibroblasts MRC-5 cells and human lung adenocarcinoma H1975 cells co-cultured or separately cultured were determined by ELISA assay. Western blot was used to detect the expressions of EGFR and Met signal pathway-related proteins and epithelial-mesenchymal transition (EMT) markers in H1975 cells treated with HGF and/or afatinib.

Results: The MTT assay showed that H1975 cells were hyposensitive to afatinib in the presence of HGF. The ELISA assay showed that HGF production by H1975 cells was less than 0.1 ng/2.0×10(6) cells, but HGF production by MRC-5 cells was (151.37 ± 2.07)ng/2.0×10(6) cells incubated for 48 h. When H1975 cells and MRC-5 cells were co-cultured for 72 h, the concentration of HGF in the culture supernatant was (61.13 ± 16.21)ng/ml. In the presence of HGF, the expression of p-Met, p-Akt and p-ERK proteins in the H1975 cells was markedly up-regulated. afatinib inhibited p-EGFR, but did not affect the expression of p-Met, p-Akt and p-ERK proteins. In the presence of afatinib, HGF up-regulated the expression of vimentin and down-regulated the expression of E-cadherin.

Conclusions: HGF secreted by stromal cells in the tumor micro-environment may confer resistance to afatinib in H1975 cells by activation of the Met/PI3K/Akt and Met/MAPK/ERK signaling pathways, and is involved in the epithelial-mesenchymal transition process.

Download full-text PDF

Source

Publication Analysis

Top Keywords

h1975 cells
36
cells
15
hgf
13
mrc-5 cells
12
h1975
9
primary resistance
8
resistance afatinib
8
afatinib hgf
8
afatinib growth
8
human lung
8

Similar Publications

A series of 2,4-disubstituted pyrimidine derivatives bearing 5-substituted-1,3,4 thidiazole were devised and synthesized based on the binding mode of the approved drug Osimertinib with the ATP competitive site of EGFR-L858R/T790M in order to increase selectivity towards double mutant EGFR and potent antitumor activity. Their cellular bioactivity and corresponding enzyme inhibition were studied, and it was revealed that several compounds had significant biological activity and selectivity when compared to the control compounds. One of the most promising compound 8, substantially suppressed the proliferation of H1975 cells and showed significant inhibition of double mutant EGFR-L858R/T790M TK with IC values of 0.

View Article and Find Full Text PDF

In recent decades, significant advancements have been achieved in non-small cell lung cancer (NSCLC) treatment. However, drug resistance, postoperative recurrence, distant metastasis, and other critical issues arise during NSCLC treatment. Natural products play a crucial role in the development of anti-tumor drugs.

View Article and Find Full Text PDF

REV7 is a multifunctional protein involved in the DNA damage response, cell cycle regulation, gene expression, or primordial germ cell maintenance. REV7 expression in tumor cells is associated with clinical aggressive features and chemoresistance in several human malignancies, however, the clinicopathological significance of REV7 in lung adenocarcinoma (LUAD) has not been studied yet. In this study, we investigated the significance of REV7 expression in LUAD using clinical materials and cell lines.

View Article and Find Full Text PDF

Background: Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are standard treatments for non-small cell lung cancer (NSCLC) patients with EGFR mutations; however, drug resistance limits their efficacy. Cytoskeleton-associated protein 4 (CKAP4) has been linked to cancer progression, but its role in EGFR-TKI resistance remains unclear.

Objective: This study investigates the clinical relevance of CKAP4 as a therapeutic target to overcome EGFR-TKI resistance in lung adenocarcinoma (LUAD) patients.

View Article and Find Full Text PDF

Shikonin induces the apoptosis and pyroptosis of EGFR-T790M-mutant drug-resistant non-small cell lung cancer cells via the degradation of cyclooxygenase-2.

Eur J Med Res

December 2024

Department of Immunology and Microbiology, College of Life Science and Technology, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, No. 601 Huangpu Avenue West, Tianhe, Guangzhou, 510632, China.

Background: The T790M mutation in the epidermal growth factor receptor (EGFR) gene is the primary cause of resistance to EGFR-tyrosine kinase inhibitor (TKI) therapy in non-small cell lung cancer (NSCLC) patients. Previous research demonstrated that certain traditional Chinese medicine (TCM) monomers exhibit anti-tumor effects against various malignancies. This study aims to investigate the potentials of shikonin screened from a TCM monomer library containing 1060 monomers in killing EGFR-T790M drug-resistant NSCLC cells and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!