Background: Dietary patterns can substantially vary the resource consumption and environmental impact of a given population. Dietary changes such as the increased consumption of vegetables and reduced consumption of animal products reduce the environmental footprint and thus the use of natural resources. The adherence of a given population to the Mediterranean Dietary Pattern (MDP) through the consumption of the food proportions and composition defined in the new Mediterranean Diet pyramid can thus not only influence human health but also the environment. The aim of the study was to analyze the sustainability of the MDP in the context of the Spanish population in terms of greenhouse gas emissions, agricultural land use, energy consumption and water consumption. Furthermore, we aimed to compare the current Spanish diet with the Mediterranean Diet and in comparison with the western dietary pattern, exemplified by the U.S.A. food pattern, in terms of their corresponding environmental footprints.

Methods: The environmental footprints of the dietary patterns studied were calculated from the dietary make-up of each dietary pattern, and specific environmental footprints of each food group. The dietary compositions were obtained from different sources, including food balance sheets and household consumption surveys. The specific environmental footprints of food groups were obtained from different available life-cycle assessments.

Results: The adherence of the Spanish population to the MDP has a marked impact on all the environmental footprints studied. Increasing adherence to the MDP pattern in Spain will reduce greenhouse gas emissions (72%), land use (58%) and energy consumption (52%), and to a lower extent water consumption (33%). On the other hand, the adherence to a western dietary pattern implies an increase in all these descriptors of between 12% and 72%.

Conclusions: The MDP is presented as not only a cultural model but also as a healthy and environmentally-friendly model, adherence to which, in Spain would have, a significant contribution to increasing the sustainability of food production and consumption systems in addition to the well-known benefits on public health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3895675PMC
http://dx.doi.org/10.1186/1476-069X-12-118DOI Listing

Publication Analysis

Top Keywords

environmental footprints
20
dietary pattern
16
western dietary
12
dietary patterns
12
mediterranean diet
12
dietary
10
consumption
10
environmental
8
spanish population
8
greenhouse gas
8

Similar Publications

This study intends to optimize the carbon footprint management model of power enterprises through artificial intelligence (AI) technology to help the scientific formulation of carbon emission reduction strategies. Firstly, a carbon footprint calculation model based on big data and AI is established, and then machine learning algorithm is used to deeply mine the carbon emission data of power enterprises to identify the main influencing factors and emission reduction opportunities. Finally, the driver-state-response (DSR) model is used to evaluate the carbon audit of the power industry and comprehensively analyze the effect of carbon emission reduction.

View Article and Find Full Text PDF

Regulatory failure to monitor and manage the impacts of tailings spills, Alberta, Canada.

Environ Monit Assess

January 2025

Treeline Ecological Research, 21551 Twp Rd 520, Sherwood Park, Alberta, T8E 1E3, Canada.

Based on analysis of documents obtained in public databases and under freedom of information requests, this study assessed the Alberta Energy Regulator's (AER) monitoring and management of bitumen tailings spills. The AER's claims of no environmental impacts at any tailings spills lack corroborative environmental data. Claims of perfect spill recovery in 75% of tailings spills are not supported by credible evidence.

View Article and Find Full Text PDF

Three-quarters of the planet's land surface has been altered by humans, with consequences for animal ecology, movements and related ecosystem functioning. Species often occupy wide geographical ranges with contrasting human disturbance and environmental conditions, yet, limited data availability across species' ranges has constrained our understanding of how human pressure and resource availability jointly shape intraspecific variation of animal space use. Leveraging a unique dataset of 758 annual GPS movement trajectories from 375 brown bears (Ursus arctos) across the species' range in Europe, we investigated the effects of human pressure (i.

View Article and Find Full Text PDF

This study introduces an innovative approach to enhancing recycled aggregate concrete (RAC) by incorporating nanosilica (NS) and natural fibers (NF), specifically sisal fiber (SF) and palm fiber (PF). This novel combination aims to overcome the inherent limitations of RAC, such as reduced strength and durability, while promoting sustainability in construction. The research focuses on evaluating the mechanical properties of RAC, including compressive and flexural strengths, through the integration of NS and NF.

View Article and Find Full Text PDF

The pursuit of materials, particularly plastics, with a minimal ecological footprint throughout their circular lifecycle, is crucial for advancing sustainable materials development. Living materials composed of embedded yet active organisms can leverage endogenous biotic resources to achieve functional materials that align with sustainability goals. However, current living material systems face challenges such as weak mechanical properties, limited environmental adaptability, and restricted cellular functionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!