Atractylis lancea (Thunb.) DC. (AL), an important medicinal herb in Asia, has been shown to have anti-tumor effects on cancer cells, but the involved mechanisms are poorly understood. This study focused on potential effects and molecular mechanisms of AL on the proliferation of the Hep-G2 liver cancer cell line in vitro. Cell viability was assessed by MTT test in Hep-G2 cells incubated with an ethanol extract of AL. Then, the effects of AL on apoptosis and cell cycle progression were determined by flow cytometry. Telomeric repeat amplification protocol (TRAP) assays was performed to investigate telomerase activity. The mRNA and protein expression of human telomerase reverse transcriptase (hTERT) and c-myc were determined by real-time RT-PCR and Western blotting. Our results show that AL effectively inhibits proliferation in Hep-G2 cells in a concentration- and time-dependent manner. When Hep-G2 cells were treated with AL after 48h,the IC50 was about 72.1 μg/ mL. Apoptosis was induced by AL via arresting the cells in the G1 phase. Furthermore, AL effectively reduced telomerase activity through inhibition of mRNA and protein expression of hTERT and c-myc. Hence, these data demonstrate that AL exerts anti-proliferative effects in Hep-G2 cells via down-regulation of the c-myc/hTERT/ telomerase pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7314/apjcp.2013.14.11.6363 | DOI Listing |
Int J Mol Sci
January 2025
Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
Hepatocellular carcinoma (HCC) cells critically depend on PARP1 and CHK1 activation for survival. Combining the PARP inhibitor (PARPi) olaparib with a CHK1 inhibitor (MK-8776, CHK1i) produced a synergistic effect, reducing cell viability and inducing marked oxidative stress and DNA damage, particularly in the HepG2 cells. This dual treatment significantly increased apoptosis markers, including γH2AX and caspase-3/7 activity.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, No. 232, East Waihuan Road, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China.
Epidemiological studies prove that type II diabetes, characterized by insulin resistance (IR), may be caused by fine particulate matter 2.5 (PM2.5).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece.
Olive oil and table olives are considered staples of the Mediterranean diet and have been associated with various health benefits. Literature reports that the final composition of the olive drupe is greatly affected by varietal and agronomic factors, each contributing to a different degree. To that end, the objective of the study was the evaluation of the contribution of different agronomic conditions applied to two Greek olive varieties (Koroneiki, Mastoidis) using a holistic approach of in vitro methods.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
With the increasing recognition of the role of immunomodulation and oxidative stress in various diseases, designing peptides with both immunomodulatory and antioxidant activities has emerged as a promising therapeutic strategy. In this study, a hybridization design was applied as a powerful method to obtain multifunctional peptides. A total of 40 peptides with potential immunomodulatory and antioxidant activities were designed and screened.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
About 296 million people worldwide are living with chronic hepatitis B viral (HBV) infection, and outcomes to end-stage liver diseases are potentiated by alcohol. HBV replicates in hepatocytes, but other liver non-parenchymal cells can sense the virus. In this study, we aimed to investigate the regulatory effects of macrophages on HBV marker and interferon-stimulated genes (ISGs) expressions in hepatocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!