Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Golgi methods have long been used to study the neuronal soma, axons, dendritic arborization and spines. The major concerns of the Golgi method have been its unpredictable nature (inconsistency of impregnation of the stain), time consumed, tissue hardening and clear background, resulting in several modifications to improve the cellular visualization. In the present work we describe a modification of the rapid-Golgi method that takes the benefit of perfusion fixation (with rapid-Golgi solution) then post-fixation in the same fixative for 36 h followed by 36 h impregnation in aqueous AgNO3 followed by vibratomy. This modification is simpler, faster and inexpensive, provides a consistent staining of neurons with good resolution of neuronal soma, dendritic arborization as well as spines with much reduced formation of silver chromate crystals and background in just 3 days.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!