Aim: When investigating radiation accidents, it is very important to determine the exposition dose to the individuals. In the case of exposures over 1 Gy, clinicians may expect deterministic effects arising the following weeks and months, in these cases dose estimation will help physicians in the planning of therapy. Nevertheless, for doses below 1 Gy, biodosimetry data are important due to the risk of developing late stochastic effects. Finally, some accidental overexposures are lack of physical measurements and the only way of quantifying dose is by biological dosimetry.
Background: The analysis of chromosomal aberrations by different techniques is the most developed method of quantifying dose to individuals exposed to ionising radiations.(1,2) Furthermore, the analysis of dicentric chromosomes observed in metaphases from peripheral lymphocytes is the routine technique used in case of acute exposures to assess radiation doses.
Materials And Methods: Solid stain of chromosomes is used to determine dicentric yields for dose estimation. Fluorescence in situ hybridization (FISH) for translocations analysis is used when delayed sampling or suspected chronically irradiation dose assessment. Recommendations in technical considerations are based mainly in the IAEA Technical Report No. 405.(2.)
Results: Experience in biological dosimetry at Gregorio Marañón General Hospital is described, including own calibration curves used for dose estimation, background studies and real cases of overexposition.
Conclusion: Dose assessment by biological dosimeters requires a large previous standardization work and a continuous update. Individual dose assessment involves high qualification professionals and its long time consuming, therefore requires specific Centres. For large mass casualties cooperation among specialized Institutions is needed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863315 | PMC |
http://dx.doi.org/10.1016/j.rpor.2011.06.003 | DOI Listing |
Biomed Phys Eng Express
January 2025
Department of Medical Physics, Osaka Heavy Ion Therapy Center, Otemae, Chuo-ku, Osaka, Osaka, 5400008, JAPAN.
Objective Applying carbon ion beams, which have high linear energy transfer and low scatter within the human body, to Spatially Fractionated Radiation Therapy (SFRT) could benefit the treatment of deep-seated or radioresistant tumors. This study aims to simulate the dose distributions of spatially fractionated beams (SFB) to accurately determine the delivered dose and model the cell survival rate following SFB irradiation. Approach Dose distributions of carbon ion beams are calculated using the Triple Gaussian Model.
View Article and Find Full Text PDFJ Antimicrob Chemother
January 2025
Bristol Centre for Antimicrobial Research & Evaluation (BCARE), Infection Sciences, Southmead Hospital, Westbury-on-Trym, Bristol, UK.
Background: NOSO-5O2 is the first clinical candidate of a new antimicrobial class-the odilorhabdins. The pharmacodynamics of NOSO-502 were studied in vitro and in vivo to establish the pharmacodynamic index (PDI) driver.
Methods: A dilutional pharmacokinetic system was used for in vitro experiments.
Health Phys
January 2025
National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, China.
Inhalation of 131I is the main route for internal doses to nuclear medicine workers. This study aimed to establish a simple analysis method for determining 131I activity in carbon cartridges, explore the activity concentration of 131I in nuclear medicine departments, and evaluate the internal dose of workers. A total of 21 nuclear medicine departments in the hospital conducted air sampling using a high-volume air sampler equipped with carbon cartridges and glass fiber filters to collect gaseous 131I and aerosol 131I, respectively.
View Article and Find Full Text PDFCurr Res Toxicol
December 2024
National Institute of Environmental Health Sciences, Division of Translational Toxicology, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
Mechanistically based non-animal methods for assessing skin sensitization hazard have been developed, but are not considered sufficient, individually, to conclusively define the skin sensitization potential or potency of a chemical. This resulted in the development of defined approaches (DAs), as documented in OECD TG 497, for combining information sources in a prescriptive manner to provide a determination of risk or potency. However, there are currently no DAs within OECD TG 497 that can derive a point of departure (POD) for risk assessment.
View Article and Find Full Text PDFEClinicalMedicine
January 2025
Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
Background: Limited studies have suggested an effect of dietary choline intake on uric acid levels. We aim to investigate the associations between choline intake and hyperuricemia (HUA), as well as the mediating role of kidney function in this relationship, among the Chinese population aged 6-17 years.
Methods: Participants were divided into quartiles according to residual energy-adjusted dietary choline intake in our cross-sectional study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!