Dengue virus infection is a serious public health problem in endemic areas of the world where 2.5 billion people live. Clinical manifestations of the Dengue infection range from a mild fever to fatal cases of hemorrhagic fever. Although being the most rapidly spreading mosquito-borne viral infection in the world, until now no strategies are available for effective prevention or control of Dengue infection. In this scenario, the development of compounds that specifically inhibit viral replication with minimal effects to the human hosts will have a substantial effect in minimizing the symptoms of the disease and help to prevent viral transmission in the affected population. The aim of this study was to screen compounds with potential activity against dengue virus from a library of synthetic naphthoquinones. Several 1,2- and 1,4-pyran naphthoquinones were synthesized by a three-component reaction of lawsone, aldehyde (formaldehyde or arylaldehydes) and different dienophiles adequately substituted. These compounds were tested for the ability to inhibit the ATPase activity of the viral NS3 enzyme in in vitro assays and the replication of dengue virus in cultured cells. We have identified two 1,4-pyran naphthoquinones, which inhibited dengue virus replication in mammal cells by 99.0% and three others that reduced the dengue virus ATPase activity of NS3 by two-fold in in vitro assays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869945PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082504PLOS

Publication Analysis

Top Keywords

dengue virus
24
14-pyran naphthoquinones
12
dengue
8
virus replication
8
replication dengue
8
dengue infection
8
atpase activity
8
vitro assays
8
virus
6
synthetic 14-pyran
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!