The pathophysiology of Parkinson's disease (PD) is known to involve altered patterns of neuronal firing and synchronization in cortical-basal ganglia circuits. One window into the nature of the aberrant temporal dynamics in the cerebral cortex of PD patients can come from analysis of the patients electroencephalography (EEG). Rather than using spectral-based methods, we used data models based on delay differential equations (DDE) as non-linear time-domain classification tools to analyze EEG recordings from PD patients on and off dopaminergic therapy and healthy individuals. Two sets of 50 1-s segments of 64-channel EEG activity were recorded from nine PD patients on and off medication and nine age-matched controls. The 64 EEG channels were grouped into 10 clusters covering frontal, central, parietal, and occipital brain regions for analysis. DDE models were fitted to individual trials, and model coefficients and error were used as features for classification. The best models were selected using repeated random sub-sampling validation and classification performance was measured using the area under the ROC curve A'. In a companion paper, we show that DDEs can uncover hidden dynamical structure from short segments of simulated time series of known dynamical systems in high noise regimes. Using the same method for finding the best models, we found here that even short segments of EEG data in PD patients and controls contained dynamical structure, and moreover, that PD patients exhibited a greater dynamic range than controls. DDE model output on the means from one set of 50 trials provided nearly complete separation of PD patients off medication from controls: across brain regions, the area under the receiver-operating characteristic curves, A', varied from 0.95 to 1.0. For distinguishing PD patients on vs. off medication, classification performance A' ranged from 0.86 to 1.0 across brain regions. Moreover, the generalizability of the model to the second set of 50 trials was excellent, with A' ranging from 0.81 to 0.94 across brain regions for controls vs. PD off medication, and from 0.62 to 0.82 for PD on medication vs. off. Finally, model features significantly predicted individual patients' motor severity, as assessed with standard clinical rating scales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858815PMC
http://dx.doi.org/10.3389/fneur.2013.00200DOI Listing

Publication Analysis

Top Keywords

brain regions
16
patients medication
12
patients
9
time series
8
parkinson's disease
8
healthy individuals
8
best models
8
classification performance
8
dynamical structure
8
short segments
8

Similar Publications

Persistent COVID-19 symptoms and associated factors in a tertiary hospital in Thailand.

J Infect Dev Ctries

December 2024

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand.

Introduction: Coronavirus disease 2019 (COVID-19) is associated with long-term symptoms, but the spectrum of these symptoms remains unclear. We aimed to identify the prevalence and factors associated with persistent symptoms in patients at the post-COVID-19 outpatient clinic.

Methodology: This cross-sectional, observational study included hospitalized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected patients followed-up at a post-COVID-19 clinic between September 2021 and January 2022.

View Article and Find Full Text PDF

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.

View Article and Find Full Text PDF

Persistent Postural-Perceptual Dizziness (PPPD) is a common cause of chronic vestibular syndrome. Although previous studies have identified central abnormalities in PPPD, the specific neural circuits and the alterations in brain network topological properties, and their association with dizziness and postural instability in PPPD remain unclear. This study includes 30 PPPD patients and 30 healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!