The use of deep eutectic solvents (DESs) that act as all-in-one solvent-template-reactant systems offers an interesting green alternative to conventional syntheses in materials science. This Review aims to provide a comprehensive overview to emphasize the similarities and discrepancies between DES-assisted and conventional syntheses and rationalize certain green features that are common for the three DES-assisted syntheses described herein: one case of radical polymerization and two cases of polycondensations. For instance, DESs contain the precursor itself and some additional components that either provide certain functionality (e.g., drug delivery and controlled release, or electrical conductivity) to the resulting materials or direct their formation with a particular structure (e.g., hierarchical-type). Moreover, DESs provide a reaction medium, so polymerizations are ultimately carried out in a solventless fashion. This means that DES-assisted syntheses match green chemistry principles 2 and 5 because of the economy of reagents and solvents, whereas the functionality incorporated by the second component allows the need for any post-synthesis derivatization to be minimized or even fully avoided (principle 8). DESs also provide new precursors that favor more efficient polymerization (principle 6) by decreasing the energy input required for reaction progress. Finally, the use of mild reaction conditions in combination with the compositional versatility of DESs, which allows low-toxic components to be selected, is also of interest from the viewpoint of green chemistry because it opens up the way to design biocompatible and/or eco-friendly synthetic methods (principle 3).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201300864 | DOI Listing |
Nat Commun
December 2024
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Nanoporous metals have unique potentials for energy applications with a high surface area despite the percolating structure. Yet, a highly corrosive environment is required for the synthesis of porous metals with conventional dealloying methods, limiting the large-scale fabrication of porous structures for reactive metals. In this study, we synthesize a highly reactive Mg nanoporous system through a facile organic solution-based approach without any harsh etching.
View Article and Find Full Text PDFAdv Mater
December 2024
Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
The development of efficient color conversion layers for μ-LED technology faces significant challenges owing to the limitations of materials that require binders. Binders are typically used to ensure uniform film formation in color-conversion layers, but they often cause optical losses, increase layer thickness, and introduce long-term stability issues. To address the limitations of materials requiring binders, cyclopropyltriphenylphosphonium manganese tetrabromide (CPTPMnBr) is synthesized, a novel lead-free metal halide.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China.
Developing miniaturized low-frequency acoustic sensors with high sensitivity is crucial for diverse applications, including geological monitoring and aerospace exploration. However, the performance of low-frequency acoustic sensor is constrained by the limited mechanical robustness of traditional sensing films at nanoscale thickness. Here, a functionalized graphene oxide (GO)-based Fabry-Perot (FP) low-frequency sensor is proposed, with characteristics of compact size, resistance to electromagnetic interference high-sensitivity low minimum detectable pressure (MDP), and a high signal-to-noise ratio (SNR).
View Article and Find Full Text PDFBMC Cancer
December 2024
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, No. 5 Dongdansantiao Street, Dongcheng District, Beijing, 100005, China.
Background: The colorectal cancer mortality rate in China has exceeded that in many developing countries and is expected to further increase owing to multiple factors, including the aging population. However, the optimal policy for colorectal cancer screening is unknown.
Methods: We synthesized the most up-to-date data using a 12-state Markov model populated with a cohort of Chinese men and women born during 1949-1988, and evaluated 16 conventional and 40 risk-tailored schemes for colorectal cancer screening, considering possible combinations of age (starting at 40 + years and ending at 75 years), frequency, and strategy (standard colonoscopy, fecal immunochemical testing with colonoscopy if positive, or risk-tailored).
Int J Biol Macromol
December 2024
Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, P.O. Box 48175-861, Sari 4847193698, Iran; Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:
The environmental persistence of pharmaceuticals represents a significant threat to aquatic ecosystems and human health, while limitations in conventional wastewater treatment methods underscore the urgent need for innovative and eco-friendly degradation strategies. Photobiocatalytic approaches provide a promising solution for the effective degradation of pharmaceutical contaminants by harnessing the synergistic effects of both photocatalysts and biocatalysts. In this study, we developed a photobiocatalytic composite by co-immobilizing laccase enzyme and zinc oxide nanoparticles on bacterial cellulose synthesized from orange peel waste.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!