We present two novel automated image analysis methods to differentiate centroblast (CB) cells from noncentroblast (non-CB) cells in digital images of H&E-stained tissues of follicular lymphoma. CB cells are often confused by similar looking cells within the tissue, therefore a system to help their classification is necessary. Our methods extract the discriminatory features of cells by approximating the intrinsic dimensionality from the subspace spanned by CB and non-CB cells. In the first method, discriminatory features are approximated with the help of singular value decomposition (SVD), whereas in the second method they are extracted using Laplacian Eigenmaps. Five hundred high-power field images were extracted from 17 slides, which are then used to compose a database of 213 CB and 234 non-CB region of interest images. The recall, precision, and overall accuracy rates of the developed methods were measured and compared with existing classification methods. Moreover, the reproducibility of both classification methods was also examined. The average values of the overall accuracy were 99.22% ± 0.75% and 99.07% ± 1.53% for COB and CLEM, respectively. The experimental results demonstrate that both proposed methods provide better classification accuracy of CB/non-CB in comparison with the state of the art methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017952PMC
http://dx.doi.org/10.1002/cyto.a.22432DOI Listing

Publication Analysis

Top Keywords

classification methods
12
image analysis
8
non-cb cells
8
discriminatory features
8
methods
7
cells
6
classification
5
histopathological image
4
analysis centroblasts
4
centroblasts classification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!