Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale: Gold carbides can be produced via laser ablation synthesis (LAS) from mixtures of nano-gold (NG) and various carbonaceous materials. The nano-composite of nano-gold (NG) and nano-diamond (ND) might represent a promising precursor for the generation of new gold carbides.
Methods: Time-of-flight mass spectrometry (TOF MS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) were used. The stoichiometry of clusters was determined via modelling of the isotopic patterns and MS(n) analysis.
Results: A simple procedure for the preparation of ND-NG nano-composite was developed using NG and ND. The formation of AuCn(+) (n = 1-11, 18), Au2Cn(+) (n = 1-16) and Au3Cn(+) (n = 1-10) clusters during LAS of the nano-composite was proved. Structures of gold carbides are proposed and discussed. Diamonds-containing AumCn(+) (m = 1-3, n = 10, 14, 18, 22) clusters might be not carbides but endohedral supramolecular complexes Aum@Cn(+) i.e., 'gold-doped' diamonds.
Conclusions: TOF MS was shown to be a useful technique for following the formation of gold carbides in the gas phase. Clusters and 'gold-doped' diamonds generated might inspire synthesis of new Au-C materials with hardly predictable, unusual properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.6783 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!