Phosphatidylinositol 5-phosphate (PtdIns5P), the least characterized among the three phosphatidylinositol monophosphates, is emerging as a bioactive lipid involved in the control of several cellular functions. Similar to PtdIns3P, it is present in low amounts in mammalian cells, and can be detected at the plasma membrane and endomembranes as well as in the nucleus. Changes in PtdIns5P levels are observed in mammalian cells following specific stimuli or stresses, and in human diseases. Recently, the contribution of several enzymes such as PIKfyve, myotubularins, and type II PtdInsP-kinases to PtdIns5P metabolism has gained a strong experimental support. Here, we provide a picture emerging from recent studies showing how this lipid can be generated and act as a regulator of membrane and cytoskeleton dynamics, and as a modulator of gene expression. We briefly summarize the current methods and tools for studying PtdIns5P, and discuss how PtdIns5P can integrate and coordinate different functions in a spatiotemporal manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bies.201300132 | DOI Listing |
Diabetes is associated with the dysfunction of glucagon-producing pancreatic islet α-cells, although the underlying mechanisms regulating glucagon secretion and α-cell dysfunction remain unclear. While insulin secretion from pancreatic β-cells has long been known to be partly controlled by intracellular phospholipid signaling, very little is known about the role of phospholipids in glucagon secretion. Here we show that TMEM55A, a lipid phosphatase that dephosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-5-phosphate (PI5P), regulates α-cell exocytosis and glucagon secretion.
View Article and Find Full Text PDFMol Cancer Res
January 2025
Department for BioMedical Research, University of Bern, Bern, Switzerland.
Although early prostate cancer depends on the androgen receptor signaling pathway, which is predominant in luminal cells, there is much to be understood about the contribution of epithelial basal cells in cancer progression. Herein, we observe cell type-specific differences in the importance of the metabolic enzyme phosphatidylinositol 5-phosphate 4-kinase alpha (PI5P4Kα; gene name PIP4K2A) in the prostate epithelium. We report the development of a basal cell-specific genetically engineered mouse model targeting Pip4k2a alone or in combination with the tumor suppressor phosphatase and tensin homolog (Pten).
View Article and Find Full Text PDFStructure
October 2024
Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA. Electronic address:
Int J Mol Sci
June 2024
Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan.
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are two common diseases that affect the elderly population worldwide. The identification of common genes associated with AD and T2DM holds promise for potential biomarkers and intriguing pathogenesis of these two complicated diseases. This study utilized a comprehensive approach by integrating transcriptome data from multiple cohorts, encompassing both AD and T2DM.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
July 2024
Nature Reviews Molecular Cell Biology, .
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!